ADVANCED MITIGATING TECHNIQUES TO REMOVE THE EFFECTS OF WIND TURBINES AND WIND FARMS ON PRIMARY SURVEILLANCE RADARS

被引:0
|
作者
Sergey, Leonov
Hubbard, Oliver
Ding, Zhen
Ghadaki, Hamid
Wang, Jian
Ponsford, Tony
机构
来源
2008 IEEE RADAR CONFERENCE, VOLS. 1-4 | 2008年
关键词
Radar; wind farm; detection; feature aided tracking; track classification; mitigation;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In the past decade many countries have launched programs to deploy wind turbines as alternative sources of electrical energy. When deployed in wind farms this technology has raised concerns from both air traffic control (ATC) and military authorities. This is due to the fact that the turbine blades return radar echoes that have the potential to distract and confuse the air traffic picture by creating false detections that can effectively mask genuine aircraft returns. Most of the mitigation solutions offered today are either primarily based on such measures as range-azimuth gating or inhibiting track initiation in the vicinity of wind farms. These draconian measures can result in a significant degradation in radar performance and potential air traffic control disruption. They may also require costly redesign of the existing radars[1-3]. This paper presents a set of 'clean' solutions that mitigate, and in some cases completely eliminate the effect of wind turbine returns. The solution is based on the combination of discrimination techniques applied at the pre-detection, detection and post detection stages of the radar signal processing chain. The suit of mitigation solutions developed does not adversely affect aircraft detection, and can be readily retrofitted to the existing ATC primary surveillance radars (PSR).
引用
收藏
页码:24 / 29
页数:6
相关论文
共 50 条
  • [31] Equivalent models of wind farms by using aggregated wind turbines and equivalent winds
    Fernandez, L. M.
    Garcia, C. A.
    Saenz, J. R.
    Jurado, F.
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (03) : 691 - 704
  • [32] Calculation model and method of output power loss of wind farms and wind turbines
    Mei, Huawei
    Mi, Zengqiang
    Bai, Junliang
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2014, 38 (02): : 12 - 16
  • [33] Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms
    Saavedra-Moreno, B.
    Salcedo-Sanz, S.
    Paniagua-Tineo, A.
    Prieto, L.
    Portilla-Figueras, A.
    RENEWABLE ENERGY, 2011, 36 (11) : 2838 - 2844
  • [34] Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions
    Chowdhury, Souma
    Zhang, Jie
    Messac, Achille
    Castillo, Luciano
    RENEWABLE ENERGY, 2013, 52 : 273 - 282
  • [35] Wake losses optimization of offshore wind farms with moveable floating wind turbines
    Rodrigues, S. F.
    Pinto, R. Teixeira
    Soleimanzadeh, M.
    Bosman, Peter A. N.
    Bauer, P.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 89 : 933 - 941
  • [36] Advanced Screening Techniques for Sub-Synchronous Interaction in Wind Farms
    Sahni, M.
    Muthumuni, D.
    Badrzadeh, B.
    Gole, A.
    Kulkarni, A.
    2012 IEEE PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2012,
  • [37] Multiple wind turbines shielding model of lightning attractiveness for mountain wind farms
    Nie, Jiayi
    Xiang, Nianwen
    Li, Kejie
    Chen, Weijiang
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 224
  • [38] Self-confirmation of onboard anemometer status of wind turbines in wind farms
    Zhou L.
    Zhao Q.
    Shi Z.
    Wang X.
    Yang X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (11): : 172 - 178
  • [39] Distributed Complementary Control Research of Wind Turbines in Two Offshore Wind Farms
    Wang, Bing
    Tian, Min
    Lin, Tingjun
    Hu, Yinlong
    SUSTAINABILITY, 2018, 10 (02)
  • [40] Out of sight of wind turbines-Reindeer response to wind farms in operation
    Skarin, Anna
    Sandstrom, Per
    Alam, Moudud
    ECOLOGY AND EVOLUTION, 2018, 8 (19): : 9906 - 9919