POINTWISE ERROR ESTIMATES FOR C0 INTERIOR PENALTY APPROXIMATION OF BIHARMONIC PROBLEMS

被引:1
|
作者
Leykekhman, D. [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
Maximum norm; finite element method; pointwise error estimates; Green's function; biharmonic equation; interior penalty; local error estimates; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT METHODS; MAXIMUM-NORM; EQUATIONS;
D O I
10.1090/mcom/3596
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to derive pointwise global and local best approximation type error estimates for biharmonic problems using the C-0 interior penalty method. The analysis uses the technique of dyadic decompositions of the domain, which is assumed to be a convex polygon. The proofs require local energy estimates and new pointwise Green's function estimates for the continuous problem which has independent interest.
引用
收藏
页码:41 / 63
页数:23
相关论文
共 50 条
  • [1] C0 Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems
    Brenner, Susanne C.
    Monk, Peter
    Sun, Jiguang
    [J]. SPECTRAL AND HIGH ORDER METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS ICOSAHOM 2014, 2015, 106 : 3 - 15
  • [2] Local parameter selection in the C0 interior penalty method for the biharmonic equation
    Bringmann, Philipp
    Carstensen, Carsten
    Streitberger, Julian
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2024, 32 (03) : 257 - 273
  • [3] C0 Interior Penalty Methods
    Brenner, Susanne C.
    [J]. FRONTIERS IN NUMERICAL ANALYSIS - DURHAM 2010, 2012, 85 : 78 - 146
  • [4] A C0 interior penalty method for the Dirichlet control problem governed by biharmonic operator
    Chowdhury, Sudipto
    Gudi, Thirupathi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 290 - 306
  • [5] A cubic C0 interior penalty method for elliptic distributed optimal control problems with pointwise state and control constraints
    Brenner, Susanne C.
    Sung, Li-yeng
    Tan, Zhiyu
    [J]. RESULTS IN APPLIED MATHEMATICS, 2020, 7
  • [6] Modified C0 interior penalty analysis for fourth order Dirichlet boundary control problem and a posteriori error estimates
    Chowdhury, Sudipto
    Garg, Divay
    Shokeen, Ravina
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 185 - 211
  • [7] Multigrid algorithms for C0 interior penalty methods
    Brenner, SC
    Sung, LY
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) : 199 - 223
  • [8] An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem
    Brenner, Susanne C.
    Gudi, Thirupathi
    Sung, Li-Yeng
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (03) : 777 - 798
  • [9] Isoparametric C0 interior penalty methods for plate bending problems on smooth domains
    Susanne C. Brenner
    Michael Neilan
    Li-Yeng Sung
    [J]. Calcolo, 2013, 50 : 35 - 67
  • [10] AN A PRIORI ERROR ANALYSIS OF A STRAIN GRADIENT MODEL USING C0 INTERIOR PENALTY METHODS
    Baldonedo, Jacobo
    Fernandez, Jose R.
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (05): : 2303 - 2312