Local parameter selection in the C0 interior penalty method for the biharmonic equation

被引:0
|
作者
Bringmann, Philipp [1 ]
Carstensen, Carsten [2 ]
Streitberger, Julian [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Vienna, Austria
[2] Humboldt Univ, Dept Math, Berlin, Germany
基金
奥地利科学基金会;
关键词
C-0 interior penalty method; discontinuous Galerkin method; biharmonic equation; implementation; local parameter selection; penalty parameter; MULTIGRID ALGORITHMS; MORLEY FEM;
D O I
10.1515/jnma-2023-0028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The symmetric C-0 interior penalty method is one of the most popular discontinuous Galerkin methods for the biharmonic equation. This paper introduces an automatic local selection of the involved stability parameter in terms of the geometry of the underlying triangulation for arbitrary polynomial degrees. The proposed choice ensures a stable discretization with guaranteed discrete ellipticity constant. Numerical evidence for uniform and adaptive mesh refinement and various polynomial degrees supports the reliability and efficiency of the local parameter selection and recommends this in practice. The approach is documented in 2D for triangles, but the methodology behind can be generalized to higher dimensions, to non-uniform polynomial degrees, and to rectangular discretizations. An appendix presents the realization of our proposed parameter selection in various established finite element software packages.
引用
收藏
页码:257 / 273
页数:17
相关论文
共 50 条
  • [1] C0 Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems
    Brenner, Susanne C.
    Monk, Peter
    Sun, Jiguang
    [J]. SPECTRAL AND HIGH ORDER METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS ICOSAHOM 2014, 2015, 106 : 3 - 15
  • [2] A C0 interior penalty method for the phase field crystal equation
    Diegel, Amanda E.
    Sharma, Natasha S.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 2510 - 2537
  • [3] A C0 interior penalty method for the Dirichlet control problem governed by biharmonic operator
    Chowdhury, Sudipto
    Gudi, Thirupathi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 290 - 306
  • [4] A C0 interior penalty method for mth-Laplace equation
    Chen, Huangxin
    Li, Jingzhi
    Qiu, Weifeng
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (06) : 2081 - 2103
  • [5] POINTWISE ERROR ESTIMATES FOR C0 INTERIOR PENALTY APPROXIMATION OF BIHARMONIC PROBLEMS
    Leykekhman, D.
    [J]. MATHEMATICS OF COMPUTATION, 2021, 90 (327) : 41 - 63
  • [6] C0 Interior Penalty Methods
    Brenner, Susanne C.
    [J]. FRONTIERS IN NUMERICAL ANALYSIS - DURHAM 2010, 2012, 85 : 78 - 146
  • [7] A C0 Interior Penalty Finite Element Method for Flexoelectricity
    Ventura, Jordi
    Codony, David
    Fernandez-Mendez, Sonia
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
  • [8] AN ITERATIVE SUBSTRUCTURING ALGORITHM FOR A C0 INTERIOR PENALTY METHOD
    Brenner, Susanne C.
    Wang, Kening
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2012, 39 : 313 - 332
  • [9] A C0 Interior Penalty Finite Element Method for Flexoelectricity
    Jordi Ventura
    David Codony
    Sonia Fernández-Méndez
    [J]. Journal of Scientific Computing, 2021, 88
  • [10] A TWO-GRID METHOD FOR THE C0 INTERIOR PENALTY DISCRETIZATION OF THE MONGE-AMPERE EQUATION
    Awanou, Gerard
    Li, Hengguang
    Malitz, Eric
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (04) : 547 - 564