Diffusion and localization in chaotic billiards

被引:112
|
作者
Borgonovi, F
Casati, G
Li, BW
机构
[1] UNIV MILAN,COMO,ITALY
[2] UNIV MILAN,IST NAZL FIS MAT,I-22100 MILAN,ITALY
[3] INST NAZL FIS NUCL,SEZIONE PAVIA,PAVIA,ITALY
[4] INST NAZL FIS NUCL,SEZIONE MILANO,MILAN,ITALY
[5] HONG KONG BAPTIST UNIV,DEPT PHYS,HONG KONG,HONG KONG
[6] HONG KONG BAPTIST UNIV,CTR NONLINEAT & COMPLEX SYST,HONG KONG,HONG KONG
[7] UNIV MARIBOR,CTR APPL MATH & THEORET PHYS,SLO-2000 MARIBOR,SLOVENIA
关键词
D O I
10.1103/PhysRevLett.77.4744
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study analytically and numerically the classical diffusive process which takes place in a chaotic billiard. This allows one to estimate the conditions under which the statistical properties of eigenvalues and eigenfunctions can be described by random matrix theory. in particular, the phenomenon of quantum dynamical localization should be observable in real experiments.
引用
收藏
页码:4744 / 4747
页数:4
相关论文
共 50 条
  • [21] Chaotic and ergodic properties of cylindric billiards
    Bálint, P
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 1127 - 1156
  • [22] Anomalous entanglement in chaotic Dirac billiards
    Ramos, J. G. G. S.
    da Silva, I. M. L.
    Barbosa, A. L. R.
    PHYSICAL REVIEW B, 2014, 90 (24)
  • [23] Geometric magnetism in massive chaotic billiards
    Berry, MV
    Sinclair, EC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08): : 2853 - 2861
  • [24] On Chaotic Dynamics in Rational Polygonal Billiards
    Kokshenev, Valery B.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2005, 1
  • [25] Chaotic billiards seen as mirror cabinets
    Kruelle, CA
    Kittel, A
    Peinke, J
    Richter, R
    Huebener, RP
    PHYSICA D, 1997, 102 (3-4): : 227 - 233
  • [26] Effect of noise in open chaotic billiards
    Altmann, Eduardo G.
    Leitao, Jorge C.
    Lopes, Joao Viana
    CHAOS, 2012, 22 (02)
  • [27] Chaotic properties of the truncated elliptical billiards
    Lopac, V.
    Simic, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (01) : 309 - 323
  • [28] Quasieigenstate evolution in open chaotic billiards
    Lee, Sang-Bum
    Yang, Juhee
    Moon, Songky
    Lee, Soo-Young
    Shim, Jeong-Bo
    Kim, Sang Wook
    Lee, Jai-Hyung
    An, Kyungwon
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [29] Chaotic dynamics in classical nuclear billiards
    Bordeianu, C. C.
    Felea, D.
    Besliu, C.
    Jipa, Al.
    Grossu, I. V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (01) : 324 - 340
  • [30] Klein paradox in chaotic Dirac billiards
    Rodrigues da Silva, A. F. M.
    Barros, M. S. M.
    Nascimento Junior, A. J.
    Barbosa, A. L. R.
    Ramos, J. G. G. S.
    ANNALS OF PHYSICS, 2019, 405 : 256 - 273