Dual-Frequency Autoencoder for Anomaly Detection in Transformed Hyperspectral Imagery

被引:7
|
作者
Liu, Yidan [1 ]
Xie, Weiying [1 ]
Li, Yunsong [1 ]
Li, Zan [1 ]
Du, Qian [2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39759 USA
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Anomaly detection; Detectors; Task analysis; Image reconstruction; Frequency-domain analysis; Unsupervised learning; Autoencoder (AE); dual-frequency; hyperspectral anomaly detection (HAD); transformation; RX-ALGORITHM;
D O I
10.1109/TGRS.2022.3152263
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral anomaly detection (HAD) is a challenging task since samples are unavailable for training. Although unsupervised learning methods have been developed, they often train the model using an original hyperspectral image (HSI) and require retraining on different HSIs, which may limit the feasibility of HAD methods in practical applications. To tackle this problem, we propose a dual-frequency autoencoder (DFAE) detection model in which the original HSI is transformed into high-frequency components (HFCs) and low-frequency components (LFCs) before detection. A novel spectral rectification is first proposed to alleviate the spectral variation problem and generate the LFCs of HSI. Meanwhile, the HFCs are extracted by the Laplacian operator. Subsequently, the proposed DFAE model is learned to detect anomalies from the LFCs and HFCs in parallel. Finally, the learned model is well-generalized for anomaly detection from other hyperspectral datasets. While breaking the dilemma of limited generalization in the sample-free HAD task, the proposed DFAE can enhance the background-anomaly separability, providing a better performance gain. Experiments on real datasets demonstrate that the DFAE method exhibits competitive performance compared with other advanced HAD methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Compression technique for hyperspectral imagery oriented anomaly detection
    Nian, Yong-Jian
    Wang, Zhan
    Wan, Jian-Wei
    Xin, Qin
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2009, 31 (03): : 48 - 52
  • [42] Kernel Sparse Representation for Anomaly Detection in Hyperspectral Imagery
    Xiong, Jie
    Ling, Qiang
    Lin, Zaiping
    Wu, Jing
    ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, 2018, : 106 - 110
  • [43] Background Suppression Issues in Anomaly Detection for Hyperspectral Imagery
    Wang, Yulei
    Chen, Shih-Yu
    Liu, Chunhong
    Chang, Chein-, I
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
  • [44] Multiple Band Selection for Anomaly Detection in Hyperspectral Imagery
    Wang, Lin
    Chang, Chein-I
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7022 - 7025
  • [45] Kernel-based anomaly detection in hyperspectral imagery
    Kwon, Heesung
    Nasrabadi, Nasser M.
    TRANSFORMATIONAL SCIENCE AND TECHNOLOGY FOR THE CURRENT AND FUTURE FORCE, 2006, 42 : 3 - +
  • [46] Saliency weighted RX hyperspectral imagery anomaly detection
    Liu J.
    Wang S.
    Liu W.
    Hu B.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (03): : 418 - 430
  • [47] Study and Analysis on Anomaly Detection Methods for Hyperspectral Imagery
    Chen, Yuheng
    Zhou, Jiankang
    Chen, Xinhua
    Ji, Yiqun
    Shen, Weimin
    SIXTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2018), 2018, 10827
  • [48] Locality-Constrained Anomaly Detection for Hyperspectral Imagery
    Liu, Jiabin
    Li, Wei
    Du, Qian
    Liu, Kui
    INTERNATIONAL CONFERENCE ON INTELLIGENT EARTH OBSERVING AND APPLICATIONS 2015, 2015, 9808
  • [49] Unmixing component analysis for anomaly detection in hyperspectral imagery
    Gu, Yanfeng
    Ye, Zhang
    Ying, Liu
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 965 - +
  • [50] Multiple-Window Anomaly Detection for Hyperspectral Imagery
    Liu, Wei-Min
    Chang, Chein-I
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 644 - 658