Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids

被引:198
|
作者
De Haan, David O. [1 ,2 ,3 ]
Corrigan, Ashley L. [1 ]
Smith, Kyle W. [1 ]
Stroik, Daniel R. [1 ]
Turley, Jacob J. [1 ]
Lee, Frances E. [1 ]
Tolbert, Margaret A. [2 ,3 ]
Jimenez, Jose L. [2 ,3 ]
Cordova, Kyle E. [2 ,3 ]
Ferrell, Grant R. [2 ,3 ]
机构
[1] Univ San Diego, Dept Chem & Biochem, San Diego, CA 92110 USA
[2] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
OLIGOMER FORMATION; ATMOSPHERIC AEROSOLS; PARTICULATE MATTER; HIGH-RESOLUTION; FOG WATERS; ALDEHYDES; CONDENSATION; OXIDATION; NITROGEN; PART;
D O I
10.1021/es803534f
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Glyoxal, the simplest and most abundant alpha-dicarbonyl compound in the atmosphere, is scavenged by clouds and aerosol, where it reacts with nucleophiles to form low-volatility products. Here we examine the reactions of glyoxal with five amino acids common in clouds. When glyoxal and glycine, serine, aspartic acid or ornithine are present at concentrations as low as 30 mu M in evaporating aqueous droplets or bulk solutions, 1,3-disubstituted imidazole are formed in irreversible second-order reactions detected by nuclear magnetic resonance (NMR), aerosol mass spectrometry (AMS) and electrospray ionization mass spectrometry (ESI-MS). In contrast glyoxal reacts with arginine preferentially at side chain amino groups, forming nonaromatic five-membered rings. All reactions were accompanied by browning. The uptake of 45 ppb glyoxal by solid-phase glycine aerosol at 50% RH was also studied and found to cause particle growth and the production of imidazole measured by scanning mobility particle sizing and AMS, respectively, with a glyoxal uptake coefficient alpha = 0.0004. Comparison of reaction kinetics in bulk and in drying droplets shows that conversion of glyoxal dihydrate to monohydrate accelerates the reaction by over 3 orders of magnitude, allowing these reactions to occur at atmospheric conditions.
引用
收藏
页码:2818 / 2824
页数:7
相关论文
共 50 条
  • [21] Model Analysis of Secondary Organic Aerosol Formation by Glyoxal in Laboratory Studies: The Case for Photoenhanced Chemistry
    Sumner, Andrew J.
    Woo, Joseph L.
    McNeill, V. Faye
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (20) : 11919 - 11925
  • [22] Heterogeneous Chemistry of Glyoxal on Acidic Solutions. An Oligomerization Pathway for Secondary Organic Aerosol Formation
    Gomez, Mario E.
    Lin, Yun
    Guo, Song
    Zhang, Renyi
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (19): : 4457 - 4463
  • [23] A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol
    Volkamer, Rainer
    Martini, Federico San
    Molina, Luisa T.
    Salcedo, Dara
    Jimenez, Jose L.
    Molina, Mario J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (19)
  • [24] Secondary organic aerosol formation through reactions in atmospheric waters
    Lim, Y. B.
    Tan, Y.
    Perri, M. J.
    Altieri, K.
    Turpin, B. J.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A764 - A764
  • [25] Reactions of semivolatile organics and their effects on secondary organic aerosol formation
    Kroll, Jesse H.
    Chan, Arthur W. H.
    Ng, Nga L.
    Flagan, Richard C.
    Seinfeld, John H.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (10) : 3545 - 3550
  • [26] Kinetics of oligomer-forming reactions involving the major functional groups present in atmospheric secondary organic aerosol particles
    Maben, Hannah K.
    Ziemann, Paul J.
    [J]. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2023, 25 (02) : 214 - 228
  • [27] Importance of Wintertime Anthropogenic Glyoxal and Methylglyoxal Emissions in Beijing and Implications for Secondary Organic Aerosol Formation in Megacities
    Qiu, Xionghui
    Wang, Shuxiao
    Ying, Qi
    Duan, Lei
    Xing, Jia
    Cao, Jingyuan
    Wu, Di
    Li, Xiaoxiao
    Xing Chengzhi
    Yan, Xiao
    Liu, Cheng
    Hao, Jiming
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (19) : 11809 - 11817
  • [28] Cloud forming potential of secondary organic aerosol under near atmospheric conditions
    Duplissy, J.
    Gysel, M.
    Alfarra, M. R.
    Dommen, J.
    Metzger, A.
    Prevot, A. S. H.
    Weingartner, E.
    Laaksonen, A.
    Raatikainen, T.
    Good, N.
    Turner, S. F.
    McFiggans, G.
    Baltensperger, U.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (03)
  • [29] Hydroxydicarboxylic acids:: Markers for secondary organic aerosol from the photooxidation of α-pinene
    Claeys, Magda
    Szmigielski, Rafal
    Kourtchev, Ivan
    Van der Veken, Pieter
    Vermeylen, Reinhilde
    Maenhaut, Willy
    Jaoui, Mohammed
    Kleindienst, Tadeusz E.
    Lewandowski, Michael
    Offenberg, John H.
    Edney, Edward O.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (05) : 1628 - 1634
  • [30] Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime
    Hodzic, A.
    Madronich, S.
    Kasibhatla, P. S.
    Tyndall, G.
    Aumont, B.
    Jimenez, J. L.
    Lee-Taylor, J.
    Orlando, J.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (16) : 9253 - 9269