Analysis of some mixed elements for the Stokes problem

被引:9
|
作者
Cheng, XL
Han, WM
Huang, HC
机构
[1] HONG KONG BAPTIST UNIV,DEPT MATH,KOWLOON,HONG KONG
[2] HANGZHOU UNIV,DEPT MATH,HANGZHOU 310028,PEOPLES R CHINA
[3] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52242
关键词
Stokes problem; mixed finite elements; reduced integration penalty method; optimal order error estimates;
D O I
10.1016/S0377-0427(97)00120-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss some mixed finite element methods related to the reduced integration penalty method for solving the Stokes problem. We prove optimal order error estimates for bilinear-constant and biquadratic-bilinear velocity-pressure finite element solutions. The result for the biquadratic-bilinear element is new while that for the bilinear-constant element improves the convergence analysis of Johnson and Pitkaranta (1982). In the degenerate case when the penalty parameter is set to be zero, our results reduce to some related known results proved in by Brezzi and Fortin (1991) for the bilinear-constant element, and Bercovier and Pironneau (1979) for the biquadratic-bilinear element. Our theoretical results are consistent with the numerical results reported by Carey and Krishnan (1982) and Oden et al. (1982).
引用
收藏
页码:19 / 35
页数:17
相关论文
共 50 条
  • [1] Analysis of some mixed elements for the Stokes problem
    Hong Kong Baptist Univ, Kowloon Tong, Hong Kong
    J Comput Appl Math, 1 (19-35):
  • [2] ANALYSIS OF SOME FINITE-ELEMENTS FOR THE STOKES PROBLEM
    BERNARDI, C
    RAUGEL, G
    MATHEMATICS OF COMPUTATION, 1985, 44 (169) : 71 - 79
  • [3] Analysis of Estimators for Stokes Problem Using a Mixed Approximation
    El Akkad, Abdeslam
    Elkhalfi, Ahmed
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (06): : 105 - 128
  • [4] A posteriori analysis for a mixed formulation of the Stokes spectral problem
    Lepe, Felipe
    Vellojin, Jesus
    CALCOLO, 2023, 60 (04)
  • [5] A posteriori analysis for a mixed formulation of the Stokes spectral problem
    Felipe Lepe
    Jesus Vellojin
    Calcolo, 2023, 60
  • [6] Finite elements for the Stokes problem
    Boffi, Daniele
    Brezzi, Franco
    Fortin, Michel
    MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS, AND APPLICATIONS, 2008, 1939 : 45 - 100
  • [7] APPROXIMATION BY MIXED FINITE-ELEMENTS OF STOKES PROBLEM IN VELOCITY PRESSURE FORMULATION
    GLOWINSKI, R
    PIRONNEAU, O
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (03): : 181 - 183
  • [8] NUMERICAL EXPERIMENTS FOR THE ARNOLD-WINTHER MIXED FINITE ELEMENTS FOR THE STOKES PROBLEM
    Carstensen, Carsten
    Gedicke, Joscha
    Park, Eun-Jae
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2267 - A2287
  • [10] Superconvergence of some nonconforming brick elements for the 3D Stokes problem
    Zhou, Xinchen
    Niu, Hexin
    Meng, Zhaoliang
    Su, Jing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 151 : 50 - 66