Superconvergence of some nonconforming brick elements for the 3D Stokes problem

被引:1
|
作者
Zhou, Xinchen [1 ]
Niu, Hexin [1 ]
Meng, Zhaoliang [2 ]
Su, Jing [3 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[3] Dalian Univ Sci & Technol, Dept Basic Sci, Dalian 116052, Peoples R China
关键词
Superconvergence; Nonconforming brick element; Stokes problem; CONSTANT SCHEME; SUPERCLOSENESS; APPROXIMATIONS; EXTRAPOLATION;
D O I
10.1016/j.camwa.2023.09.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the superconvergence of three nonconforming brick elements for the 3D Stokes problem: a nonconforming rotated Q1 type element, the reduced version of this element and an edge-face-based element. The superclose interpolations are different from the canonical ones, and superclose analyses for the consistency error are also given, ensuring an 0(h2) -order for both the velocity and the pressure for all these elements. By applying suitable postprocessing techniques, global superconvergence can be derived. Numerical examples are presented to confirm our theory.
引用
收藏
页码:50 / 66
页数:17
相关论文
共 50 条
  • [1] Simple nonconforming brick element for 3D Stokes equations
    Zhou, Xinchen
    Meng, Zhaoliang
    Fan, Xin
    Luo, Zhongxuan
    APPLIED MATHEMATICS LETTERS, 2018, 78 : 9 - 15
  • [2] Superconvergence of a Nonconforming Brick Element for the Quad-Curl Problem
    Zhou, Xinchen
    Meng, Zhaoliang
    Niu, Hexin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (06)
  • [3] Low-order nonconforming brick elements for the 3D Brinkman model
    Zhou, Xinchen
    Meng, Zhaoliang
    Su, Jing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 98 : 201 - 217
  • [4] NONCONFORMING FINITE-ELEMENTS FOR THE STOKES PROBLEM
    CROUZEIX, M
    FALK, RS
    MATHEMATICS OF COMPUTATION, 1989, 52 (186) : 437 - 456
  • [5] Stable nonconforming quadrilateral finite elements for the Stokes problem
    Kim, Y
    Lee, S
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 115 (2-3) : 101 - 112
  • [6] Superconvergence of the MINI mixed finite element discretization of the Stokes problem: An experimental study in 3D
    Cioncolini, Andrea
    Boffi, Daniele
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2022, 201
  • [7] A new superconvergence property of nonconforming rotated Q1 element in 3D
    Ming, Pingbing
    Shi, Zhong-Ci
    Xu, Yun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) : 95 - 102
  • [8] Superconvergence of a 3D finite element method for stationary Stokes and Navier-Stokes problems
    Matthies, G
    Skrzypacz, P
    Tobiska, L
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (04) : 701 - 725
  • [9] Three-dimensional stable nonconforming parallelepiped elements for the Stokes problem
    Kim, Y
    Huh, H
    Lee, S
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 130 (2-3) : 573 - 586
  • [10] Stable low order nonconforming quadrilateral finite elements for the stokes problem
    Kim, Y
    Kim, S
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2002, 39 (03) : 363 - 376