Kernel-based hard clustering methods in the feature space with automatic variable weighting

被引:16
|
作者
Ferreira, Marcelo R. P. [1 ]
de Carvalho, Francisco de A. T.
机构
[1] Univ Fed Paraiba, Ctr Ciencias Exatas & Nat, Dept Estat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Kernel clustering; Feature space; Adaptive distances; Clustering analysis; ALGORITHM;
D O I
10.1016/j.patcog.2014.03.026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents variable-wise kernel hard clustering algorithms in the feature space in which dissimilarity measures are obtained as sums of squared distances between patterns and centroids computed individually for each variable by means of kernels. The methods proposed in this paper are supported by the fact that a kernel function can be written as a sum of kernel functions evaluated on each variable separately. The main advantage of this approach is that it allows the use of adaptive distances, which are suitable to learn the weights of the variables on each cluster, providing a better performance. Moreover, various partition and cluster interpretation tools are introduced. Experiments with synthetic and benchmark datasets show the usefulness of the proposed algorithms and the merit of the partition and cluster interpretation tools. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3082 / 3095
页数:14
相关论文
共 50 条
  • [31] A kernel-based fuzzy clustering algorithm
    Wang, Jiun-Hau
    Lee, Wan-Jui
    Lee, Shie-Jue
    ICICIC 2006: FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING, INFORMATION AND CONTROL, VOL 1, PROCEEDINGS, 2006, : 550 - +
  • [32] A Gaussian Kernel-based Clustering Algorithm with Automatic Hyper-parameters Computation
    de Carvalho, Francisco de A. T.
    Ferreira, Marcelo R. P.
    Simoes, Eduardo C.
    ADVANCES IN NEURAL NETWORKS - ISNN 2016, 2016, 9719 : 393 - 400
  • [33] Multiclass kernel-based feature extraction
    Zhao, Y
    Lia, HL
    Ahalt, S
    DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS AND TECHNOLOGY IV, 2002, 4730 : 9 - 16
  • [34] Two Novel Kernel-based Semi-supervised Clustering Methods by Seeding
    Gu, Lei
    Sun, Fuchun
    PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 78 - 82
  • [35] Kernel Parameter Optimization in Stretched Kernel-Based Fuzzy Clustering
    Lu, Chunhong
    Zhu, Zhaomin
    Gu, Xiaofeng
    PARTIALLY SUPERVISED LEARNING, PSL 2013, 2013, 8193 : 49 - 57
  • [36] A Kernel-Based Core Growing Clustering Method
    Hsieh, T. W.
    Taur, J. S.
    Tao, C. W.
    Kung, S. Y.
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (04) : 441 - 458
  • [37] A New Log Kernel-Based Possibilistic Clustering
    Tushir, Meena
    Nigam, Jyotsna
    SOFTWARE ENGINEERING (CSI 2015), 2019, 731 : 139 - 152
  • [38] A new kernel-based algorithm for online clustering
    Boubacar, HA
    Lecoeuche, S
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 583 - 588
  • [39] Clustering with kernel-based equiprobabilistic topographic maps
    Van Hulle, MM
    Leuven, KU
    NEURAL NETWORKS FOR SIGNAL PROCESSING VIII, 1998, : 204 - 213
  • [40] Kernel-based fuzzy competitive learning clustering
    Mizutani, K
    Miyamoto, S
    FUZZ-IEEE 2005: Proceedings of the IEEE International Conference on Fuzzy Systems: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 636 - 639