Quenched asymptotics for a 1-d stochastic heat equation driven by a rough spatial noise

被引:3
|
作者
Chakraborty, Prakash [1 ]
Chen, Xia [2 ]
Gao, Bo [2 ]
Tindel, Samy [3 ]
机构
[1] Purdue Univ, Dept Stat, 150 N Univ St, W Lafayette, IN 47907 USA
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[3] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
关键词
Stochastic heat equation; Parabolic Anderson model; Fractional Brownian motion; Feynman-Kac formula; Lyapounov exponent; BROWNIAN-MOTION;
D O I
10.1016/j.spa.2020.06.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note we consider the parabolic Anderson model in one dimension with time-independent fractional noise (W)over dot in space. We consider the case H < 1/2 and get existence and uniqueness of solution. In order to find the quenched asymptotics for the solution we consider its Feynman-Kac representation and explore the asymptotics of the principal eigenvalue for a random operator of the form 1/2 Delta + (W)over dot. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:6689 / 6732
页数:44
相关论文
共 50 条
  • [31] STOCHASTIC HEAT EQUATION WITH ROUGH DEPENDENCE IN SPACE
    Hu, Yaozhong
    Huang, Jingyu
    Le, Khoa
    Nualart, David
    Tindel, Samy
    ANNALS OF PROBABILITY, 2017, 45 (6B): : 4561 - 4616
  • [32] NONLINEAR STOCHASTIC HEAT EQUATION DRIVEN BY SPATIALLY COLORED NOISE: MOMENTS AND INTERMITTENCY
    Chen, Le
    Kim, Kunwoo
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (03) : 645 - 668
  • [33] NONLINEAR STOCHASTIC HEAT EQUATION DRIVEN BY SPATIALLY COLORED NOISE:MOMENTS AND INTERMITTENCY
    陈乐
    Kunwoo KIM
    Acta Mathematica Scientia, 2019, 39 (03) : 645 - 668
  • [34] The fractional stochastic heat equation driven by time-space white noise
    Moulay Hachemi R.Y.
    Øksendal B.
    Fractional Calculus and Applied Analysis, 2023, 26 (2) : 513 - 532
  • [35] Nonlinear Stochastic Heat Equation Driven by Spatially Colored Noise: Moments and Intermittency
    Le Chen
    Kunwoo Kim
    Acta Mathematica Scientia, 2019, 39 : 645 - 668
  • [36] SOME STABILITY RESULTS FOR SEMILINEAR STOCHASTIC HEAT EQUATION DRIVEN BY A FRACTIONAL NOISE
    El Barrimi, Oussama
    Ouknine, Youssef
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (03) : 631 - 648
  • [37] Numerical Solution of 1-D DPL Heat Transfer Equation
    Raszkowski, Tomasz
    Zubert, Mariusz
    Janicki, Marcin
    Napieralski, Andrzej
    2015 22ND INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS (MIXDES), 2015, : 436 - 439
  • [38] Irreducibility and Asymptotics of Stochastic Burgers Equation Driven by α-stable Processes
    Dong, Zhao
    Wang, Feng-Yu
    Xu, Lihu
    POTENTIAL ANALYSIS, 2020, 52 (03) : 371 - 392
  • [39] A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation
    Lissy, Pierre
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (11-12) : 591 - 595
  • [40] Irreducibility and Asymptotics of Stochastic Burgers Equation Driven by α-stable Processes
    Zhao Dong
    Feng-Yu Wang
    Lihu Xu
    Potential Analysis, 2020, 52 : 371 - 392