Identification of Suppressors of mbk-2/DYRK by Whole-Genome Sequencing

被引:12
|
作者
Wang, Yuemeng [1 ]
Wang, Jennifer T. [1 ]
Rasoloson, Dominique [1 ]
Stitzel, Michael L. [1 ]
O' Connell, Kevin F. [2 ]
Smith, Harold E. [2 ]
Seydoux, Geraldine [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
[2] NIDDK, NIH, Bethesda, MD 20892 USA
来源
G3-GENES GENOMES GENETICS | 2014年 / 4卷 / 02期
基金
美国国家卫生研究院;
关键词
whole-genome sequencing; single nucleotide polymorphism mapping; suppressors; DYRK kinase; MBK-2; C; elegans; TO-EMBRYO TRANSITION; CAENORHABDITIS-ELEGANS; C.-ELEGANS; KINASE; DEGRADATION; ASYMMETRY; SEGREGATION; CHROMOSOME; ACTIVATION; REGULATORS;
D O I
10.1534/g3.113.009126
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Screening for suppressor mutations is a powerful method to isolate genes that function in a common pathway or process. Because suppressor mutations often do not have phenotypes on their own, cloning of suppressor loci can be challenging. A method combining whole-genome sequencing (WGS) and single nucleotide polymorphism (SNP) mapping (WGS/SNP mapping) was developed to identify mutations with visible phenotypes in C. elegans. We show here that WGS/SNP mapping is an efficient method to map suppressor mutations without the need for previous phenotypic characterization. Using RNA-mediated interference to test candidate loci identified by WGS/SNP mapping, we identified 10 extragenic and six intragenic suppressors of mbk-2, a DYRK family kinase required for the transition from oocyte to zygote. Remarkably, seven suppressors are mutations in cell-cycle regulators that extend the timing of the oocyte-to-zygote transition.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [21] Whole-genome re-sequencing
    Bentley, David R.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2006, 16 (06) : 545 - 552
  • [22] Whole-Genome Sequencing in Healthy People
    Lindor, Noralane M.
    Thibodeau, Stephen N.
    Burke, Wylie
    MAYO CLINIC PROCEEDINGS, 2017, 92 (01) : 159 - 172
  • [23] Privacy Protection in Whole-Genome Sequencing
    不详
    CANCER DISCOVERY, 2012, 2 (12) : 1070 - 1070
  • [24] Whole-genome sequencing for HCM screening
    Fernandez-Ruiz I.
    Nature Reviews Cardiology, 2018, 15 (10) : 582 - 582
  • [25] Whole-Genome Sequencing in Primary Care
    Vassy, J. L.
    Christensen, K. D.
    Schonman, E. F.
    Blout, C. L.
    Robinson, J. O.
    Krier, J. B.
    Diamond, P. M.
    Lebo, M.
    Machini, K.
    Azzariti, D. R.
    Dukhovny, D.
    Bates, D. W.
    MacRae, C. A.
    Murray, M. F.
    Rehm, H. L.
    McGuire, A. L.
    Green, R. C.
    ANNALS OF INTERNAL MEDICINE, 2017, 167 (03) : I20 - I20
  • [26] Whole-genome sequencing of the UK Biobank
    Halldorsson, Bjarni, V
    Stefansson, Kari
    NATURE, 2022,
  • [27] Whole-Genome Sequencing in Personalized Therapeutics
    Cordero, P.
    Ashley, E. A.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2012, 91 (06) : 1001 - 1009
  • [28] Whole-genome sequencing diagnostics for newborns
    Louisa Flintoft
    Nature Reviews Genetics, 2012, 13 (11) : 758 - 758
  • [29] Whole-Genome Sequencing in Outbreak Analysis
    Gilchrist, Carol A.
    Turner, Stephen D.
    Riley, Margaret F.
    Petri, William A., Jr.
    Hewlett, Erik L.
    CLINICAL MICROBIOLOGY REVIEWS, 2015, 28 (03) : 541 - 563
  • [30] Identification of single nucleotide variants in the Moroccan population by whole-genome sequencing
    Lucy Crooks
    Johnathan Cooper-Knock
    Paul R. Heath
    Ahmed Bouhouche
    Mostafa Elfahime
    Mimoun Azzouz
    Youssef Bakri
    Mohammed Adnaoui
    Azeddine Ibrahimi
    Saaïd Amzazi
    Rachid Tazi-Ahnini
    BMC Genetics, 21