Identification of Suppressors of mbk-2/DYRK by Whole-Genome Sequencing

被引:12
|
作者
Wang, Yuemeng [1 ]
Wang, Jennifer T. [1 ]
Rasoloson, Dominique [1 ]
Stitzel, Michael L. [1 ]
O' Connell, Kevin F. [2 ]
Smith, Harold E. [2 ]
Seydoux, Geraldine [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
[2] NIDDK, NIH, Bethesda, MD 20892 USA
来源
G3-GENES GENOMES GENETICS | 2014年 / 4卷 / 02期
基金
美国国家卫生研究院;
关键词
whole-genome sequencing; single nucleotide polymorphism mapping; suppressors; DYRK kinase; MBK-2; C; elegans; TO-EMBRYO TRANSITION; CAENORHABDITIS-ELEGANS; C.-ELEGANS; KINASE; DEGRADATION; ASYMMETRY; SEGREGATION; CHROMOSOME; ACTIVATION; REGULATORS;
D O I
10.1534/g3.113.009126
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Screening for suppressor mutations is a powerful method to isolate genes that function in a common pathway or process. Because suppressor mutations often do not have phenotypes on their own, cloning of suppressor loci can be challenging. A method combining whole-genome sequencing (WGS) and single nucleotide polymorphism (SNP) mapping (WGS/SNP mapping) was developed to identify mutations with visible phenotypes in C. elegans. We show here that WGS/SNP mapping is an efficient method to map suppressor mutations without the need for previous phenotypic characterization. Using RNA-mediated interference to test candidate loci identified by WGS/SNP mapping, we identified 10 extragenic and six intragenic suppressors of mbk-2, a DYRK family kinase required for the transition from oocyte to zygote. Remarkably, seven suppressors are mutations in cell-cycle regulators that extend the timing of the oocyte-to-zygote transition.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [1] Mutation mapping and identification by whole-genome sequencing
    Leshchiner, Ignaty
    Alexa, Kristen
    Kelsey, Peter
    Adzhubei, Ivan
    Austin-Tse, Christina A.
    Cooney, Jeffrey D.
    Anderson, Heidi
    King, Matthew J.
    Stottmann, Rolf W.
    Garnaas, Maija K.
    Ha, Seungshin
    Drummond, Iain A.
    Paw, Barry H.
    North, Trista E.
    Beier, David R.
    Goessling, Wolfram
    Sunyaev, Shamil R.
    GENOME RESEARCH, 2012, 22 (08) : 1541 - 1548
  • [2] Whole-genome sequencing
    Morris, Huw R.
    Houlden, Henry
    Polke, James
    PRACTICAL NEUROLOGY, 2021, 21 (04) : 322 - +
  • [3] Whole-genome sequencing: identification of additional pathogenic variation across the genome
    Mills, James Dominic
    Sisodiya, Sanjay M.
    BRAIN COMMUNICATIONS, 2021, 3 (04)
  • [4] Interpreting Whole-Genome Sequencing
    Grody, Wayne W.
    Vilain, Eric
    Nelson, Stanley F.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2014, 312 (03): : 296 - 296
  • [5] Whole-genome sequencing in pharmacogeneticson
    Urban, Thomas J.
    PHARMACOGENOMICS, 2013, 14 (04) : 345 - 348
  • [6] Whole-genome DNA sequencing
    Myers, G
    COMPUTING IN SCIENCE & ENGINEERING, 1999, 1 (03) : 33 - 43
  • [7] Whole-genome sequencing of a spirochaete
    Cathy Holding
    Genome Biology, 4 (1)
  • [8] Whole-genome sequencing strategies
    Stein, Richard, 1600, Mary Ann Liebert Inc. (34):
  • [9] Regulation of MBK-2/Dyrk kinase by dynamic cortical anchoring during the oocyte-to-zygote transition
    Stitzel, Michael L.
    Cheng, Ken Chih-Chien
    Seydoux, Geraldine
    CURRENT BIOLOGY, 2007, 17 (18) : 1545 - 1554
  • [10] Recommend Whole-Genome Sequencing
    Dimmock, David
    NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (25): : 2444 - 2445