Design and Fabrication of Nanostructure for Mid-IR Antireflection Surface Texturing Applications

被引:0
|
作者
Sood, Rachit M. [1 ]
Nafisa, Fatima [1 ]
Bamford, Douglas [2 ]
Woolf, David [2 ]
Hensley, Joel [2 ]
Singh, Narsingh [3 ]
Choa, Fow-Sen [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD 21227 USA
[2] Phys Sci Inc, 20 New England Business Ctr, Andover, MA 01810 USA
[3] Univ Maryland Baltimore Cty, Dept Chem & Biochem, Baltimore, MD 21227 USA
关键词
Anti-Reflection; Nanostructures; Nanofabrication; Dry etching; Wet etching; Textures; Photolithography; Arrays; SOLAR-CELLS; PERFORMANCE;
D O I
10.1117/12.2548392
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reduction of unwanted light reflection from a surface of a substance is very essential for the improvement of the performance of optical and photonic devices. Anti-reflection (AR) surface textures can be created on the surface of lenses and other optical elements to reduce the intensity of surface reflections. AR textures are indispensable in numerous applications, both low and high power, and are increasingly demanded on highly curved optical components. Nanofabrication involves the fabrication of devices at the nanometer scale. In this work, we used nanofabrication to design and fabricate nanostructures of squares and hexagons of different spatial pitch and gap width in Gallium Arsenide (GaAs). These structures have a gap of 300nm, 400nm, and pitch of 900nm, 1000nm and 1100nm. The fabrication process involves solvent cleaning, deposition of silicon oxide, soft and hard bake, photolithography and development. Both wet and dry etching were used to fabricate the expected structures. Results from scanning electron microscopy (SEM) to examine the shapes of the fabricated arrays are presented in this study. By combining dry and wet etches, we obtained the desired shapes and depth of hexagons and squares with rounded edges. We report detailed fabrication processes and their corresponding results at each step.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Progress on mid-IR graphene photonics and biochemical applications
    Cheng Z.
    Qin C.
    Wang F.
    He H.
    Goda K.
    Frontiers of Optoelectronics, 2016, 9 (2) : 259 - 269
  • [32] Highly nonlinear tellurite glasses for mid-IR applications
    Dorofeev, V. V.
    Okhrimchuk, A. G.
    Koltashev, V. V.
    Smayev, M. P.
    Motorin, S. E.
    Balueva, K. V.
    Plekhovich, A. D.
    INTERNATIONAL CONFERENCE LASER OPTICS 2020 (ICLO 2020), 2020,
  • [33] Evaluation of Dilute Bismide Materials for Mid-IR Applications
    Hader, J.
    Badescu, S. C.
    Bannow, L. C.
    Moloney, J. V.
    Johnson, S. R.
    Koch, S. W.
    2018 IEEE INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC), 2018, : 183 - 184
  • [34] Development of InSb dry etch for mid-IR applications
    Pusino, Vincenzo
    Xie, Chengzhi
    Khalid, Ata
    Thayne, Iain G.
    Cumming, David R. S.
    MICROELECTRONIC ENGINEERING, 2016, 153 : 11 - 14
  • [35] Tellurium and sulfur doped GaSe for mid-IR applications
    Z.-H. Kang
    J. Guo
    Z.-S. Feng
    J.-Y. Gao
    J.-J. Xie
    L.-M. Zhang
    V. Atuchin
    Y. Andreev
    G. Lanskii
    A. Shaiduko
    Applied Physics B, 2012, 108 : 545 - 552
  • [36] Erbium doped GaSe crystal for mid-IR applications
    Hsu, Yu-Kuei
    Chen, Ching-Wei
    Huang, Jung Y.
    Pan, Ci-Ling
    OPTICS EXPRESS, 2006, 14 (12): : 5484 - 5491
  • [37] Tellurium and sulfur doped GaSe for mid-IR applications
    Kang, Z. -H.
    Guo, J.
    Feng, Z. -S.
    Gao, J. -Y.
    Xie, J. -J.
    Zhang, L. -M.
    Atuchin, V.
    Andreev, Y.
    Lanskii, G.
    Shaiduko, A.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 108 (03): : 545 - 552
  • [38] Direct gap Ge1-ySny alloys: Fabrication and design of mid-IR photodiodes
    Senaratne, C. L.
    Wallace, P. M.
    Gallagher, J. D.
    Sims, P. E.
    Kouvetakis, J.
    Menendez, J.
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (02)
  • [39] The design and application of domestic mid-IR fiber optics
    Weng, SF
    Gao, JP
    Xu, YZ
    Yang, LR
    Bian, BY
    Xiang, HB
    Wu, JG
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2004, 24 (05) : 628 - 630
  • [40] Design and development of MIRI, the mid-IR instrument for JWST
    Wright, G. S.
    Reike, G.
    Barella, P.
    Boeker, T.
    Colina, L.
    van Dishoeck, E.
    Driggers, P.
    Goodson, G.
    Greene, T.
    Heske, A.
    Henning, T.
    Lagage, P-O.
    Meixner, M.
    Norgaard-Nielsen, H.
    Oloffson, G.
    Ray, T.
    Ressler, M.
    Thatcher, J.
    Waelkens, C.
    Wright, D.
    Zehnder, A.
    SPACE TELESCOPES AND INSTRUMENTATION 2008: OPTICAL, INFRARED, AND MILLIMETER, PTS 1 AND 2, 2008, 7010