Waves in nonlinear lattices: Ultrashort optical pulses and bose-einstein condensates

被引:95
|
作者
Sivan, Y. [1 ]
Fibich, G.
Weinstein, M. I.
机构
[1] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
关键词
D O I
10.1103/PhysRevLett.97.193902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonlinear Schrodinger equation i partial derivative(z)A(z,x,t) + del(2)(x,t)A + [1+m(kappa x)]vertical bar A vertical bar(2)A = 0 models the propagation of ultrashort laser pulses in a planar waveguide for which the Kerr nonlinearity varies along the transverse coordinate x, and also the evolution of 2D Bose-Einstein condensates in which the scattering length varies in one dimension. Stability of bound states depends on the value of kappa = beamwidth/lattice period. Wide (kappa >> 1) and kappa = 0(1) bound states centered at a maximum of m(x) are unstable, as they violate the slope condition. Bound states centered at a minimum of m(x) violate the spectral condition, resulting in a drift instability. Thus, a nonlinear lattice can only stabilize narrow bound states centered at a maximum of m(x). Even in that case, the stability region is so small that these bound states are "mathematically stable" but "physically unstable."
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Localization of Bose-Einstein condensates in optical lattices
    Franzosi, Roberto
    Giampaolo, Salvatore M.
    Illuminati, Fabrizio
    Livi, Roberto
    Oppo, Gian-Luca
    Politi, Antonio
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2011, 9 (05): : 1248 - 1254
  • [12] Photonic crystals for matter waves: Bose-Einstein condensates in optical lattices
    Ostrovskaya, EA
    Kivshar, YS
    [J]. OPTICS EXPRESS, 2004, 12 (01): : 19 - 29
  • [13] Instabilities of Bose-Einstein condensates in optical lattices
    Kuan, W. H.
    Jiang, T. F.
    Cheng, Szu-Cheng
    [J]. CHINESE JOURNAL OF PHYSICS, 2007, 45 (02) : 219 - 229
  • [14] Excitations of Bose-Einstein condensates in optical lattices
    Braun-Munzinger, K
    Dunningham, JA
    Burnett, K
    [J]. PHYSICAL REVIEW A, 2004, 69 (05):
  • [15] Bloch waves and bloch bands of Bose-Einstein condensates in optical lattices
    Wu, B
    Diener, RB
    Niu, Q
    [J]. PHYSICAL REVIEW A, 2002, 65 (02): : 4
  • [16] Magnetism of Bose-Einstein condensates on optical lattices
    Search, CP
    Pu, H
    Zhang, W
    Meystre, P
    [J]. CONDENSED MATTER THEORIES, VOL 18, 2003, : 61 - 70
  • [17] Nonlinear localized modes in dipolar Bose-Einstein condensates in optical lattices
    Rojas-Rojas, S.
    Vicencio, R. A.
    Molina, M. I.
    Abdullaev, F. Kh
    [J]. PHYSICAL REVIEW A, 2011, 84 (03):
  • [18] Nonlinear resonant tunneling of Bose-Einstein condensates in tilted optical lattices
    Rapedius, K.
    Elsen, C.
    Witthaut, D.
    Wimberger, S.
    Korsch, H. J.
    [J]. PHYSICAL REVIEW A, 2010, 82 (06):
  • [19] Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices
    Abdullaev, Fatkhulla
    Abdumalikov, Abdulaziz
    Galimzyanov, Ravil
    [J]. PHYSICS LETTERS A, 2007, 367 (1-2) : 149 - 155
  • [20] Instability of Bose-Einstein condensates moving in optical lattices
    Iigaya, K.
    Konabe, S.
    Danshita, I.
    Nikuni, T.
    [J]. LASER PHYSICS, 2007, 17 (02) : 215 - 220