Waves in nonlinear lattices: Ultrashort optical pulses and bose-einstein condensates

被引:95
|
作者
Sivan, Y. [1 ]
Fibich, G.
Weinstein, M. I.
机构
[1] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
关键词
D O I
10.1103/PhysRevLett.97.193902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonlinear Schrodinger equation i partial derivative(z)A(z,x,t) + del(2)(x,t)A + [1+m(kappa x)]vertical bar A vertical bar(2)A = 0 models the propagation of ultrashort laser pulses in a planar waveguide for which the Kerr nonlinearity varies along the transverse coordinate x, and also the evolution of 2D Bose-Einstein condensates in which the scattering length varies in one dimension. Stability of bound states depends on the value of kappa = beamwidth/lattice period. Wide (kappa >> 1) and kappa = 0(1) bound states centered at a maximum of m(x) are unstable, as they violate the slope condition. Bound states centered at a minimum of m(x) violate the spectral condition, resulting in a drift instability. Thus, a nonlinear lattice can only stabilize narrow bound states centered at a maximum of m(x). Even in that case, the stability region is so small that these bound states are "mathematically stable" but "physically unstable."
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Nonlinear polaritons in Bose-Einstein condensates in optical lattices
    Maimistov, AI
    Kazantseva, E
    [J]. INTERNATIONAL WORKSHOP ON QUANTUM OPTICS 2003, 2004, 5402 : 107 - 114
  • [2] Nonlinear effects for Bose-Einstein condensates in optical lattices
    Jona-Lasinio, M
    Morsch, O
    Cristiani, M
    Arimondo, E
    Menotti, C
    [J]. LASER PHYSICS, 2005, 15 (08) : 1180 - 1188
  • [3] BOSE-EINSTEIN CONDENSATES IN OPTICAL LATTICES IN THE NONLINEAR REGIME
    Morsch, Oliver
    Arimondo, Ennio
    [J]. NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS, 2005, 153 : 223 - 236
  • [4] Bose-Einstein condensates in optical lattices
    Wasilewski, W
    Trippenbach, M
    Rzazewski, K
    [J]. ACTA PHYSICA POLONICA A, 2002, 101 (01) : 47 - 60
  • [5] Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices
    Bludov, Yu. V.
    Konotop, V. V.
    [J]. PHYSICAL REVIEW A, 2010, 81 (01):
  • [6] Multisoliton complexes of Bose-Einstein condensates in nonlinear optical lattices
    Chen, Jun
    Lin, Qiang
    Cai, Yangjian
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (03) : 691 - 699
  • [7] Generating vector solitary waves of Bose-Einstein condensates in optical lattices
    Plaja, L.
    Roman, J. San
    [J]. LASER PHYSICS, 2006, 16 (02) : 344 - 347
  • [8] Bloch waves and bloch bands of Bose-Einstein condensates in optical lattices
    Wu, Biao
    Diener, Roberto B.
    Niu, Qian
    [J]. 2002, American Institute of Physics Inc. (65):
  • [9] Bose-Einstein condensates in optical quasicrystal lattices
    Sanchez-Palencia, L
    Santos, L
    [J]. PHYSICAL REVIEW A, 2005, 72 (05):
  • [10] Dynamics of Bose-Einstein condensates in optical lattices
    Morsch, O
    Oberthaler, M
    [J]. REVIEWS OF MODERN PHYSICS, 2006, 78 (01) : 179 - 215