On the Nil R-mod Abelian Groups

被引:0
|
作者
Najafizadeh, Alireza [1 ]
Karimi, Fatemeh [1 ]
Zafarkhah, Maryam [1 ]
机构
[1] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
关键词
Nil; Ring; Torsion-free; SQUARE SUBGROUP;
D O I
10.1007/s10013-018-00331-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an abelian group and N be a subgroup of M. Given a ring R, the notion of a left nil R-mod group modulo N is introduced as a generalization of a left nil R-mod group. Moreover, we define NilRl(M) as a subgroup of M which is defined to be the intersection of all subgroups N of M such that M is a left nil R-mod group modulo N. In this paper, we investigate some properties of the NilRl(M). Moreover, we describe it in some torsion-free abelian groups of rank two.
引用
收藏
页码:477 / 485
页数:9
相关论文
共 50 条
  • [31] Malt Groups of Abelian Groups
    Agafonov A.A.
    Kamara N.F.
    Sebeldin A.M.
    Sebeldin D.A.
    Fofana S.L.
    Journal of Mathematical Sciences, 2021, 259 (4) : 390 - 393
  • [32] NILPOTENCY OF ABELIAN-BY-ABELIAN GROUPS
    YAGZHEV, AV
    MATHEMATICAL NOTES, 1988, 43 (3-4) : 244 - 245
  • [33] Almost isomorphism of Abelian groups and determinability of Abelian groups by their subgroups
    Grinshpon S.Ya.
    Mordovskoi A.K.
    Journal of Mathematical Sciences, 2006, 135 (5) : 3281 - 3291
  • [34] Abelian fields and duality of abelian groups
    Baer, R
    AMERICAN JOURNAL OF MATHEMATICS, 1937, 59 : 869 - 888
  • [35] Abelian groups as autocommutator groups
    Codruţa Chiş
    Mihai Chiş
    Gheorghe Silberberg
    Archiv der Mathematik, 2008, 90 : 490 - 492
  • [36] Actions of abelian groups on groups
    Jabara, Enrico
    JOURNAL OF GROUP THEORY, 2007, 10 (02) : 185 - 194
  • [37] Abelian groups as autocommutator groups
    Chis, Codruta
    Chis, Mihai
    Silberberg, Gheorghe
    ARCHIV DER MATHEMATIK, 2008, 90 (06) : 490 - 492
  • [38] Induction and Computation of Bass Nil Groups for Finite Groups
    Hambleton, Ian
    Lueck, Wolfgang
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2012, 8 (01) : 199 - 219
  • [39] RG IS NIL IMPLIES R IS NIL IS EQUIVALENT TO THE KOETHE CONJECTURE
    FISHER, JW
    KREMPA, J
    HOUSTON JOURNAL OF MATHEMATICS, 1983, 9 (02): : 177 - 180
  • [40] On higher nil groups of group rings
    Juan-Pineda, Daniel
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2007, 9 (02) : 95 - 100