On the Nil R-mod Abelian Groups

被引:0
|
作者
Najafizadeh, Alireza [1 ]
Karimi, Fatemeh [1 ]
Zafarkhah, Maryam [1 ]
机构
[1] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
关键词
Nil; Ring; Torsion-free; SQUARE SUBGROUP;
D O I
10.1007/s10013-018-00331-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an abelian group and N be a subgroup of M. Given a ring R, the notion of a left nil R-mod group modulo N is introduced as a generalization of a left nil R-mod group. Moreover, we define NilRl(M) as a subgroup of M which is defined to be the intersection of all subgroups N of M such that M is a left nil R-mod group modulo N. In this paper, we investigate some properties of the NilRl(M). Moreover, we describe it in some torsion-free abelian groups of rank two.
引用
收藏
页码:477 / 485
页数:9
相关论文
共 50 条
  • [1] On the Nil R-mod Abelian Groups
    Alireza Najafizadeh
    Fatemeh Karimi
    Maryam Zafarkhah
    Vietnam Journal of Mathematics, 2019, 47 : 477 - 485
  • [2] Serre subcategories of R-mod
    Raggi, FF
    Signoret, CJE
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (09) : 2877 - 2886
  • [3] COTORSION PAIRS IN C(R-Mod)
    Bravo, Diego
    Enochs, Edgar E.
    Iacob, Alina C.
    Jenda, Overtoun M. G.
    Rada, Juan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (06) : 1787 - 1802
  • [4] On the lattices of natural and conatural classes in R-mod
    García, AA
    Rincón, H
    Montes, JR
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (02) : 541 - 556
  • [5] SECOND MODULES RELATIVE TO SUBCLASSES OF PRERADICALS OF R-MOD
    Mora, Luis Fernando Garcia
    Rincon-Mejia, Hugo Alberto
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2024, 36 : 101 - 120
  • [6] When is every preradical of R-mod a left exact radical?
    RinconMejia, HA
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (08) : 2507 - 2515
  • [7] Non-abelian nil groups
    Feigelstock, S
    ACTA MATHEMATICA HUNGARICA, 2000, 87 (03) : 229 - 234
  • [8] Non-Abelian Nil Groups
    S. Feigelstock
    Acta Mathematica Hungarica, 2000, 87 : 229 - 234
  • [9] F-SEMIPERFECT AND PERFECT MODULES IN A SUBCATEGORY OF R-MOD
    WISBAUER, R
    MATHEMATISCHE ZEITSCHRIFT, 1980, 173 (03) : 229 - 234
  • [10] Preradicals, closure operators in R-Mod and connection between them
    Kashu, A. I.
    ALGEBRA & DISCRETE MATHEMATICS, 2014, 18 (01): : 86 - 96