NORMALITY OF MONOMIAL IDEALS

被引:4
|
作者
Al-Ayyoub, Ibrahim [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid 22110, Jordan
关键词
D O I
10.1216/RMJ-2009-39-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given the monomial ideal I = (x(1)(alpha 1), ... ,x(n)(alpha n)) subset of K[x(1), ... , x(n)], where alpha(i) are positive integers and K a field, let J be the integral closure of I. It is a challenging problem to translate the question of the normality of J into a question about the exponent set Gamma(J) and the Newtonian polyhedron NP(J). A relaxed version of this problem is to give necessary or sufficient conditions on alpha 1, ... , alpha(n) for the normality of J. We show that if alpha(i) is an element of {s,l} with s and l arbitrary positive integers, then J is normal.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] Gotzmann monomial ideals
    Murai, Satoshi
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (03) : 843 - 852
  • [22] RIGID MONOMIAL IDEALS
    Clark, Timothy B. P.
    Mapes, Sonja
    JOURNAL OF COMMUTATIVE ALGEBRA, 2014, 6 (01) : 33 - 52
  • [23] On Monomial Golod Ideals
    Hailong Dao
    Alessandro De Stefani
    Acta Mathematica Vietnamica, 2022, 47 : 359 - 367
  • [24] Skeletons of monomial ideals
    Herzog, Juergen
    Jahan, Ali Soleyman
    Zheng, Xinxian
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (10) : 1403 - 1408
  • [25] A note on monomial ideals
    Barile, Margherita
    ARCHIV DER MATHEMATIK, 2006, 87 (06) : 516 - 521
  • [26] The graph of monomial ideals
    Altmann, K
    Sturmfels, B
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 201 (1-3) : 250 - 263
  • [27] SPLITTINGS OF MONOMIAL IDEALS
    Francisco, Christopher A.
    Ha, Huy Tai
    Van Tuyl, Adam
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) : 3271 - 3282
  • [28] Random monomial ideals
    De Loera, Jesus A.
    Petrovic, Sonja
    Silverstein, Lily
    Stasi, Despina
    Wilburne, Dane
    JOURNAL OF ALGEBRA, 2019, 519 : 440 - 473
  • [29] MONOMIAL CUT IDEALS
    Olteanu, Anda
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (03) : 955 - 970
  • [30] Multiplicities of monomial ideals
    Herzog, J
    Srinivasan, H
    JOURNAL OF ALGEBRA, 2004, 274 (01) : 230 - 244