A criterion for correct solvability in Lp(R) of a general Sturm-Liouville equation

被引:9
|
作者
Chernyavskaya, N. [1 ]
Shuster, L. [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math & Comp Sci, IL-84105 Beer Sheva, Israel
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
OPERATOR;
D O I
10.1112/jlms/jdp012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an equation -(r(x)y'(x))' + q(x) y(x) = f(x), x is an element of R, where f is an element of L-p(R) for p is an element of (1, infinity) with the following conditions: r > 0, q >= 0, 1/r is an element of L-1(loc) (R), q is an element of L-1(loc) (R), integral(0)(-infinity) dt/r(t)=integral(infinity)(0) dt/r(t)=infinity. By a solution of the above-mentioned equations, we mean any function y that is absolutely continuous together with ry' and satisfies it almost everywhere on R. Under the above-mentioned conditions, we give a criterion for the correct solvability of the above-mentioned equation in L-p(R) for p is an element of (1, infinity).
引用
收藏
页码:99 / 120
页数:22
相关论文
共 50 条
  • [41] Sturm-Liouville theory, asymptotics, and the Schrodinger equation
    Pearson, DB
    SPECTRAL THEORY AND COMPUTATIONAL METHODS OF STURM-LIOUVILLE PROBLEMS, 1997, 191 : 301 - 312
  • [42] On the Isospectral Sixth Order Sturm-Liouville Equation
    Ghanbari, Kazem
    Mirzaei, Hanif
    JOURNAL OF LIE THEORY, 2013, 23 (04) : 921 - 935
  • [43] Sufficient oscillation conditions for the Sturm-Liouville equation
    Bilal, Sh.
    Dzhenaliev, M. T.
    DIFFERENTIAL EQUATIONS, 2017, 53 (08) : 989 - 995
  • [44] Solvability of the inverse Sturm-Liouville problem with indecomposable boundary conditions
    Sadovnichii, V. A.
    Sultanaev, Ya. T.
    Akhtyamov, A. M.
    DOKLADY MATHEMATICS, 2007, 75 (01) : 20 - 22
  • [45] Spectral Properties Of A Discrete Sturm-Liouville Equation
    Aygar, Yelda
    ozbey, Guher Gulcehre
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 335 - 344
  • [46] LOCALIZATION CRITERION FOR THE SPECTRUM OF THE STURM-LIOUVILLE OPERATOR ON A CURVE
    Ishkin, Kh. K.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2017, 28 (01) : 37 - 63
  • [47] Inverse spectral problem for the Sturm-Liouville equation
    Brown, BM
    Samko, VS
    Knowles, IW
    Marletta, M
    INVERSE PROBLEMS, 2003, 19 (01) : 235 - 252
  • [48] THE NEW ASYMPTOTICS FOR SOLUTIONS OF THE STURM-LIOUVILLE EQUATION
    Nazirova, Elvira A.
    Sultanaev, Yaudat T.
    Valeev, Nur F.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2023, 49 (02): : 253 - 258
  • [49] On a fractional hybrid version of the Sturm-Liouville equation
    Charandabi, Zohreh Zeinalabedini
    Rezapour, Shahram
    Ettefagh, Mina
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [50] INVERSE STURM-LIOUVILLE PROBLEMS AND HILL EQUATION
    CAZES, A
    HOCHSTADT, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 111 (02) : 606 - 621