Global Policy Construction in Modular Reinforcement Learning

被引:0
|
作者
Zhang, Ruohan [1 ]
Song, Zhao [1 ]
Ballard, Dana H. [1 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, 2317 Speedway,Stop D9500, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a modular reinforcement learning algorithm which decomposes a Markov decision process into independent modules. Each module is trained using Sarsa(lambda). We introduce three algorithms for forming global policy from modules policies, and demonstrate our results using a 2D grid world.
引用
收藏
页码:4226 / 4227
页数:2
相关论文
共 50 条
  • [1] Policy Reuse in Reinforcement Learning for Modular Agents
    Raza, Sayyed Jaffar Ali
    Lin, Mingjie
    2019 IEEE 2ND INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT), 2019, : 165 - 169
  • [2] Modular Multitask Reinforcement Learning with Policy Sketches
    Andreas, Jacob
    Klein, Dan
    Levine, Sergey
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [3] Adaptable automation with modular deep reinforcement learning and policy transfer
    Raziei, Zohreh
    Moghaddam, Mohsen
    Engineering Applications of Artificial Intelligence, 2021, 103
  • [4] Adaptable automation with modular deep reinforcement learning and policy transfer
    Raziei, Zohreh
    Moghaddam, Mohsen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 103
  • [5] Global structure of policy search spaces for reinforcement learning
    Stapelberg, B.
    Malan, K. M.
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 1773 - 1781
  • [6] Composable Modular Reinforcement Learning
    Simpkins, Christopher
    Isbell, Charles
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4975 - 4982
  • [7] Modular production control using deep reinforcement learning: proximal policy optimization
    Sebastian Mayer
    Tobias Classen
    Christian Endisch
    Journal of Intelligent Manufacturing, 2021, 32 : 2335 - 2351
  • [8] MER: Modular Element Randomization for robust generalizable policy in deep reinforcement learning
    Li, Yihan
    Ren, Jinsheng
    Zhang, Tianren
    Fang, Ying
    Chen, Feng
    KNOWLEDGE-BASED SYSTEMS, 2023, 273
  • [9] Modular production control using deep reinforcement learning: proximal policy optimization
    Mayer, Sebastian
    Classen, Tobias
    Endisch, Christian
    JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (08) : 2335 - 2351
  • [10] Assessing Policy, Loss and Planning Combinations in Reinforcement Learning Using a New Modular Architecture
    Oliveira, Tiago Gaspar
    Oliveira, Arlindo L.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2022, 2022, 13566 : 427 - 439