Quasi-abelian hearts of twin cotorsion pairs on triangulated categories

被引:4
|
作者
Shah, Amit [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
关键词
Triangulated category; Twin cotorsion pair; Heart; Quasi-abelian category; Localisation; Cluster category; REPRESENTATION THEORY; MODULE CATEGORIES; ARTIN ALGEBRAS;
D O I
10.1016/j.jalgebra.2019.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, under a mild assumption, the heart (H) over bar of a twin cotorsion pair ((S, T), (U, V)) on a triangulated category C is a quasi-abelian category. If C is also Krull-Schmidt and T = U, we show that the heart of the cotorsion pair (S, T) is equivalent to the Gabriel-Zisman localisation of (H) over bar at the class of its regular morphisms. In particular, suppose C is a cluster category with a rigid object R and [X-R] the ideal of morphisms factoring through X-R = Ker(Hom(c)(R, -)), then applications of our results show that C/[X-R] is a quasi-abelian category. We also obtain a new proof of an equivalence between the localisation of this category at its class of regular morphisms and a certain subfactor category of C. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:313 / 338
页数:26
相关论文
共 50 条
  • [41] On quasi-abelian varieties of kind k
    Abe, Yukitaka
    Umeno, Takashi
    KYUSHU JOURNAL OF MATHEMATICS, 2006, 60 (02) : 305 - 316
  • [42] Cotorsion Pairs and Cartan–Eilenberg Categories
    Sinem Odabaşı
    Mediterranean Journal of Mathematics, 2016, 13 : 1479 - 1493
  • [43] Balanced Pairs on Triangulated Categories☆
    Fu, Xianhui
    Hu, Jiangsheng
    Zhang, Dongdong
    Zhu, Haiyan
    ALGEBRA COLLOQUIUM, 2023, 30 (03) : 385 - 394
  • [44] Thresholds of Random Quasi-Abelian Codes
    Fan, Yun
    Lin, Liren
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (01) : 82 - 90
  • [45] Complete Cotorsion Pairs in Exact Categories
    Li, Zhi-Wei
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (01): : 19 - 30
  • [46] Cotorsion pairs associated with Auslander categories
    Edgar E. Enochs
    Henrik Holm
    Israel Journal of Mathematics, 2009, 174 : 253 - 268
  • [47] Cotorsion pairs in cluster categories of type A∞∞
    Chang, Huimin
    Zhou, Yu
    Zhu, Bin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 156 : 119 - 141
  • [48] Cotorsion pairs in categories of quiver representations
    Holm, Henrik
    Jorgensen, Peter
    KYOTO JOURNAL OF MATHEMATICS, 2019, 59 (03) : 575 - 606
  • [49] Cotorsion pairs associated with Auslander categories
    Enochs, Edgar E.
    Holm, Henrik
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 174 (01) : 253 - 268
  • [50] Effective characterization of quasi-abelian surfaces
    Mendes Lopes, Margarida
    Pardini, Rita
    Tirabassi, Sofia
    FORUM OF MATHEMATICS SIGMA, 2023, 11