Quantifying Cognitive State from EEG using Phase Synchrony

被引:0
|
作者
Wan, Lu [1 ]
Fadlallah, Bilal H. [1 ]
Keil, Andreas
Principe, Jose C. [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
MUTUAL INFORMATION ANALYSIS; BRAIN; NETWORKS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Phase synchrony is a powerful amplitudeindependent measure that quantifies linear and nonlinear dynamics between non-stationary signals. It has been widely used in a variety of disciplines including neural science and cognitive psychology. Current time-varying phase estimation uses either the Hilbert transform or the complex wavelet transform of the signals. This paper exploits the concept of phase synchrony as a mean to discriminate face processing from the processing of a simple control stimulus. Dependencies between channel locations were assessed for two separate conditions elicited by distinct pictures (representing a human face and a Gabor patch), both flickering at a rate of 17. 5 Hz. Statistical analysis is performed using the Kolmogorov-Smirnov test. Moreover, the phase synchrony measure used is compared with a measure of association that has been previously applied in the same context: the generalized measure of association (GMA). Results show that although phase synchrony works well in revealing regions of high synchronization, and therefore achieves an acceptable level of discriminability, this comes at the expense of sacrificing time resolution.
引用
收藏
页码:5809 / 5812
页数:4
相关论文
共 50 条
  • [41] Adaptive spatiotemporal encoding network for cognitive assessment using resting state EEG
    Jingnan Sun
    Anruo Shen
    Yike Sun
    Xiaogang Chen
    Yunxia Li
    Xiaorong Gao
    Bai Lu
    npj Digital Medicine, 7 (1)
  • [42] EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke
    Dubovik, Sviatlana
    Ptak, Radek
    Aboulafia, Tatiana
    Magnin, Cecile
    Gillabert, Nicole
    Allet, Lara
    Pignat, Jean-Michel
    Schnider, Armin
    Guggisberg, Adrian G.
    BEHAVIOURAL NEUROLOGY, 2013, 26 (03) : 187 - 189
  • [43] Quantifying synchrony patterns in the EEG of Alzheimer’s patients with linear and non-linear connectivity markers
    Markus Waser
    Heinrich Garn
    Reinhold Schmidt
    Thomas Benke
    Peter Dal-Bianco
    Gerhard Ransmayr
    Helena Schmidt
    Stephan Seiler
    Günter Sanin
    Florian Mayer
    Georg Caravias
    Dieter Grossegger
    Wolfgang Frühwirt
    Manfred Deistler
    Journal of Neural Transmission, 2016, 123 : 297 - 316
  • [44] Regional Patterns of Cortical Phase Synchrony in the Resting State
    Casimo, Kaitlyn
    Darvas, Felix
    Wander, Jeremiah
    Ko, Andrew
    Grabowski, Thomas J.
    Novotny, Edward
    Poliakov, Andrew
    Ojemann, Jeffrey G.
    Weaver, Kurt E.
    BRAIN CONNECTIVITY, 2016, 6 (06) : 470 - 481
  • [45] Comparison of Phase Synchrony Information Flow in Human EEG through Wavelet Phase Synchronization Analysis
    Nesaei, Sahar
    Nesaei, Sepideh
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 187 - +
  • [46] Examining the spatial phase synchrony of high frequency oscillations as a function of time in EEG
    Haig, AR
    Gordon, E
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2002, 45 (1-2) : 46 - 47
  • [47] EMD approach to multichannel EEG data the amplitude and phase synchrony analysis technique
    Rutkowski, Tomasz M.
    Mandic, Danilo P.
    Cichocki, Andrzej
    Przybyszewski, Andrzej W.
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF THEORETICAL AND METHODOLOGICAL ISSUES, 2008, 5226 : 122 - +
  • [48] Wavelet analysis of EEG for seizure detection: Coherence and phase synchrony estimation.
    Ravish, D. K.
    Devi, S. Shenbaga
    Krishnamoorthy, S. G.
    BIOMEDICAL RESEARCH-INDIA, 2015, 26 (03): : 514 - 524
  • [49] Estimation of the phase synchrony of neural sources via the MEG/EEG inverse problem
    David, O
    Garnero, L
    Varela, F
    NEUROIMAGE, 2001, 13 (06) : S105 - S105
  • [50] A novel multivariate phase synchrony measure: Application to multichannel newborn EEG analysis
    Baboukani, Payam Shahsavari
    Azemi, Ghasem
    Boashash, Boualem
    Colditz, Paul
    Omidvarnia, Amir
    DIGITAL SIGNAL PROCESSING, 2019, 84 : 59 - 68