Finite dimensional semisimple Q-algebras

被引:0
|
作者
Nakazi, Takahiko
Yamamoto, Takanori [1 ]
机构
[1] Hokkai Gakuen Univ, Dept Math, Sapporo, Hokkaido 0628605, Japan
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
commutative Banach algebra; semisimple Q-algebra; three dimension; norm; pick interpolation;
D O I
10.1016/j.laa.2006.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Q-algebra can be represented as an operator algebra on an infinite dimensional Hilbert space. However we do not know whether a finite n-dimensional Q-algebra can be represented on a Hilbert space of dimension n except n = I, 2. It is known that a 2-dimensional Q-algebra is just a 2-dimensional commutative operator algebra on a 2-dimensional Hilbert space. In this paper we study a finite n-dimensional semisimple Q-algebra on a finite n-dimensional Hilbert space. In particular we describe a 3-dimensional Q-algebra of the disc algebra on a 3-dimensional Hilbert space. Our studies are related to the Pick interpolation problem for a uniform algebra. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:407 / 423
页数:17
相关论文
共 50 条
  • [21] Semisimple algebras and PI-invariants of finite dimensional algebras
    Aljadeff, Eli
    Karasik, Yakov
    ALGEBRA & NUMBER THEORY, 2024, 18 (01) : 133 - 164
  • [22] A note on Q-algebras and quantization
    Tang, X
    LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (01) : 49 - 61
  • [23] A Note on Q-algebras and Quantization
    Xiang Tang
    Letters in Mathematical Physics, 2006, 75 : 49 - 61
  • [24] q-algebras and arrangements of hyperplanes
    Fronsdal, C
    JOURNAL OF ALGEBRA, 2004, 278 (02) : 433 - 455
  • [25] (α,β)-fuzzy Subalgebras of Q-algebras
    Arsham Borumand Saeid
    模糊系统与数学, 2008, (01) : 54 - 61
  • [26] METABELIAN LIE Q-ALGEBRAS
    Daniyarova, E. Yu
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2009, 6 : 26 - 48
  • [27] Q-ALGEBRAS WITHOUT INTERACTION
    SIAFARIKAS, P
    JANNUSSIS, A
    BRODIMAS, G
    PAPALOUCAS, L
    LETTERE AL NUOVO CIMENTO, 1983, 37 (03): : 119 - 123
  • [28] Representation theory for Q-algebras
    Niestegge, G
    HELVETICA PHYSICA ACTA, 1999, 72 (04): : 250 - 261
  • [29] ON A CLASS OF FINITE-DIMENSIONAL SEMISIMPLE HOPF ALGEBRAS
    Klupsch, Matthias
    Ludes, Julia
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (07) : 2932 - 2942
  • [30] ON FINITE-DIMENSIONAL SEMISIMPLE HOPF-ALGEBRAS
    ZHU, SL
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (11) : 3871 - 3885