A high-order moment approach for capturing non-equilibrium phenomena in the transition regime

被引:195
|
作者
Gu, Xiao-Jun [1 ]
Emerson, David R. [1 ]
机构
[1] STFC Daresbury Lab, Computat Sci & Engn Dept, Warrington WA4 4AD, Cheshire, England
基金
英国工程与自然科学研究理事会;
关键词
NAVIER-STOKES EQUATIONS; LINEARIZED BOLTZMANN-EQUATION; RAREFIED-GAS; BOUNDARY-CONDITIONS; NUMERICAL-ANALYSIS; KINETIC-THEORY; COUETTE-FLOW; POISEUILLE; HYDRODYNAMICS; SLIP;
D O I
10.1017/S002211200900768X
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The method of moments is employed to extend the validity of continuum-hydrodynamic models into the transition-flow regime. An evaluation of the regularized 13 moment equations for two confined flow problems, planar Collette and Poiseuille flows, indicates some important limitations. For planar Couette flow at a Knudsen number of 0.25, they fail to reproduce the Knudsen-layer velocity profile observed using a direct simulation Monte Carlo approach, and the higher-order moments are not captured particularly well. Moreover, for Poiseuille flow, this system of equations creates a large slip velocity leading to significant overprediction of the mass flow rate for Knudsen numbers above 0.4. To overcome some of these difficulties, the theory of regularized moment equations is extended to 26 moment equations. This new set of equations highlights the importance of both gradient and non-gradient transport mechanisms and is shown to overcome many of the limitations observed in the regularized 13 moment equations. In particular, for planar Couette flow, they can successfully capture the observed Knudsen-layer velocity profile well into the transition regime. Moreover, this new set of equations can correctly predict the Knudsen layer, the velocity profile and the mass flow rate of pressure-driven Poiseuille flow for Knudsen numbers up to 1.0 and captures the bimodal temperature profile in force-driven Poiseuille flow. Above this value, the 26 moment equations are not able to accurately capture the velocity profile in the centre of the channel. However, they are able to capture the basic trends and Successfully predict a Knudsen minimum at the correct value of the Knudsen number.
引用
收藏
页码:177 / 216
页数:40
相关论文
共 50 条
  • [21] Vortices and non-equilibrium phenomena in superconductors
    Dobrovolskiy, O. V.
    Bezuglyj, A. I.
    LOW TEMPERATURE PHYSICS, 2020, 46 (04) : 307 - 308
  • [22] NON-EQUILIBRIUM PHENOMENA AT SEMICONDUCTOR SURFACES
    FRANKL, DR
    SURFACE SCIENCE, 1969, 13 (01) : 2 - &
  • [23] Non-equilibrium phenomena in thermal plasmas
    Cressault Y.
    Teulet Ph.
    Baumann X.
    Gleizes A.
    Cressault, Y. (cressault@laplace.univ-tlse.fr), 1600, IOP Publishing Ltd (02):
  • [24] ON STATISTICAL MECHANICS OF NON-EQUILIBRIUM PHENOMENA
    UHLHORN, U
    ARKIV FOR FYSIK, 1960, 17 (3-4): : 193 - 232
  • [25] NON-EQUILIBRIUM PHENOMENA IN SUPERCONDUCTING JUNCTIONS
    BULYZHENKOV, IE
    IVLEV, BI
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1978, 74 (01): : 224 - 235
  • [26] NON-EQUILIBRIUM PHENOMENA AT A SOLID SURFACE
    MAZHUGA, VV
    SOKOLOV, ND
    DOKLADY AKADEMII NAUK SSSR, 1966, 168 (03): : 625 - &
  • [27] Construction of low dissipative high-order well-balanced filter schemes for non-equilibrium flows
    Wang, Wei
    Yee, H. C.
    Sjoegreen, Bjoern
    Magin, Thierry
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (11) : 4316 - 4335
  • [28] On the transition of a non-equilibrium system to an equilibrium system
    Cohen, E. G. D.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (05): : 801 - 803
  • [29] On the transition of a non-equilibrium system to an equilibrium system
    E. G. D. Cohen
    The European Physical Journal Special Topics, 2015, 224 : 801 - 807
  • [30] SCALING PROPERTIES OF MODELS OF NON-EQUILIBRIUM PHENOMENA
    LOVESEY, SW
    JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (04) : 367 - 390