A Formal Proof of the Expressiveness of Deep Learning

被引:2
|
作者
Bentkamp, Alexander [1 ,2 ]
Blanchette, Jasmin Christian [1 ,3 ]
Klakow, Dietrich [2 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam, Netherlands
[2] Univ Saarland, Saarland Informat Campus, Saarbrucken, Germany
[3] Max Planck Inst Informat, Saarland Informat Campus, Saarbrucken, Germany
来源
基金
欧洲研究理事会;
关键词
RECONSTRUCTION;
D O I
10.1007/978-3-319-66107-0_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep learning has had a profound impact on computer science in recent years, with applications to image recognition, language processing, bioinformatics, and more. Recently, Cohen et al. provided theoretical evidence for the superiority of deep learning over shallow learning. We formalized their mathematical proof using Isabelle/HOL. The Isabelle development simplifies and generalizes the original proof, while working around the limitations of the HOL type system. To support the formalization, we developed reusable libraries of formalized mathematics, including results about the matrix rank, the Borel measure, and multivariate polynomials as well as a library for tensor analysis.
引用
收藏
页码:46 / 64
页数:19
相关论文
共 50 条
  • [31] Animating formal proof at the surface: The Jape proof calculator
    Bornat, R
    Sufrin, B
    COMPUTER JOURNAL, 1999, 42 (03): : 177 - 192
  • [32] Formal proof of a program:: Find
    Filliatre, Jean-Christophe
    SCIENCE OF COMPUTER PROGRAMMING, 2007, 64 (03) : 332 - 340
  • [33] A FORMAL PROOF OF THE KEPLER CONJECTURE
    Hales, Thomas
    Adams, Mark
    Bauer, Gertrud
    Tat Dat Dang
    Harrison, John
    Le Truong Hoang
    Kaliszyk, Cezary
    Magron, Victor
    Mclaughlin, Sean
    Tat Thang Nguyen
    Quang Truong Nguyen
    Nipkow, Tobias
    Obua, Steven
    Pleso, Joseph
    Rute, Jason
    Solovyev, Alexey
    Thi Hoai An Ta
    Nam Trung Tran
    Thi Diep Trieu
    Urban, Josef
    Vu, Ky
    Zumkeller, Roland
    FORUM OF MATHEMATICS PI, 2017, 5
  • [34] Formal Verification for Safe Deep Reinforcement Learning in Trajectory Generation
    Corsi, Davide
    Marchesini, Enrico
    Farinelli, Alessandro
    Fiorini, Paolo
    2020 FOURTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2020), 2020, : 352 - 359
  • [35] Formal Languages, Deep Learning, Topology and Algebraic Word Problems
    Ackerman, Joshua
    Cybenko, George
    2021 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2021), 2021, : 134 - 141
  • [36] EML LEARNING FLOW EXPRESSIVENESS EVALUATION
    Torres, Jorge
    Juarez, Eduardo
    Manuel Dodero, Juan
    Aedo, Ignacio
    ICALT: 2009 IEEE INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES, 2009, : 298 - +
  • [37] Energy-recycling Blockchain with Proof-of-Deep-Learning
    Chenli, Changhao
    Li, Boyang
    Shi, Yiyu
    Jung, Taeho
    2019 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN AND CRYPTOCURRENCY (ICBC), 2019, : 19 - 23
  • [38] Ontology learning towards expressiveness: A survey
    Armary, Pauline
    El-Vaigh, Cheikh Brahim
    Narsis, Ouassila Labbani
    Nicolle, Christophe
    COMPUTER SCIENCE REVIEW, 2025, 56
  • [39] EXPRESSIVENESS BOUNDS FOR COMPLETENESS IN TRACE-BASED NETWORK PROOF SYSTEMS
    WIDOM, J
    PANANGADEN, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 299 : 200 - 214
  • [40] Formal Proof of SCHUR Conjugate Function
    Butelle, Franck
    Hivert, Florent
    Mayero, Micaela
    Toumazet, Frederic
    INTELLIGENT COMPUTER MATHEMATICS, 2010, 6167 : 158 - +