A Machine Learning Approach to Diagnosing Lung and Colon Cancer Using a Deep Learning-Based Classification Framework

被引:164
|
作者
Masud, Mehedi [1 ]
Sikder, Niloy [2 ]
Nahid, Abdullah-Al [3 ]
Bairagi, Anupam Kumar [2 ]
AlZain, Mohammed A. [4 ]
机构
[1] Taif Univ, Coll Comp & Informat Technol, Dept Comp Sci, POB 11099, At Taif 21944, Saudi Arabia
[2] Khulna Univ, Comp Sci & Engn Discipline, Khulna 9208, Bangladesh
[3] Khulna Univ, Elect & Commun Engn Discipline, Khulna 9208, Bangladesh
[4] Taif Univ, Coll Comp & Informat Technol, Dept Informat Technol, POB 11099, At Taif 21944, Saudi Arabia
关键词
deep learning; lung cancer detection; colon cancer detection; histopathological image analysis; image classification; NEURAL-NETWORKS;
D O I
10.3390/s21030748
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The field of Medicine and Healthcare has attained revolutionary advancements in the last forty years. Within this period, the actual reasons behind numerous diseases were unveiled, novel diagnostic methods were designed, and new medicines were developed. Even after all these achievements, diseases like cancer continue to haunt us since we are still vulnerable to them. Cancer is the second leading cause of death globally; about one in every six people die suffering from it. Among many types of cancers, the lung and colon variants are the most common and deadliest ones. Together, they account for more than 25% of all cancer cases. However, identifying the disease at an early stage significantly improves the chances of survival. Cancer diagnosis can be automated by using the potential of Artificial Intelligence (AI), which allows us to assess more cases in less time and cost. With the help of modern Deep Learning (DL) and Digital Image Processing (DIP) techniques, this paper inscribes a classification framework to differentiate among five types of lung and colon tissues (two benign and three malignant) by analyzing their histopathological images. The acquired results show that the proposed framework can identify cancer tissues with a maximum of 96.33% accuracy. Implementation of this model will help medical professionals to develop an automatic and reliable system capable of identifying various types of lung and colon cancers.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [41] Classification of crisis-related data on Twitter using a deep learning-based framework
    Nayan Ranjan Paul
    Deepak Sahoo
    Rakesh Chandra Balabantaray
    Multimedia Tools and Applications, 2023, 82 : 8921 - 8941
  • [42] Machine learning-based approach for zircon classification and genesis determination
    Zhu Z.
    Zhou F.
    Wang Y.
    Zhou T.
    Hou Z.
    Qiu K.
    Earth Science Frontiers, 2022, 29 (05) : 464 - 475
  • [43] Classification of crisis-related data on Twitter using a deep learning-based framework
    Paul, Nayan Ranjan
    Sahoo, Deepak
    Balabantaray, Rakesh Chandra
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (06) : 8921 - 8941
  • [44] A machine learning-based classification approach for phase diagram prediction
    Deffrennes, Guillaume
    Terayama, Kei
    Abe, Taichi
    Tamura, Ryo
    MATERIALS & DESIGN, 2022, 215
  • [45] Identification and classification of pneumonia disease using a deep learning-based intelligent computational framework
    Yi, Rong
    Tang, Lanying
    Tian, Yuqiu
    Liu, Jie
    Wu, Zhihui
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 14473 - 14486
  • [46] Identification and classification of pneumonia disease using a deep learning-based intelligent computational framework
    Rong Yi
    Lanying Tang
    Yuqiu Tian
    Jie Liu
    Zhihui Wu
    Neural Computing and Applications, 2023, 35 : 14473 - 14486
  • [47] A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
    Khan, SanaUllah
    Islam, Naveed
    Jan, Zahoor
    Din, Ikram Ud
    Rodrigues, Joel J. P. C.
    PATTERN RECOGNITION LETTERS, 2019, 125 : 1 - 6
  • [48] Lung Cancer Detection and Classification using Deep Learning
    Tekade, Ruchita
    Rajeswari, K.
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [49] Classification of malignant lung cancer using deep learning
    Kumar, Vinod
    Bakariya, Brijesh
    Journal of Medical Engineering and Technology, 2021, 45 (02): : 85 - 93
  • [50] A Hybrid Deep Learning-Based Approach for Brain Tumor Classification
    Raza, Asaf
    Ayub, Huma
    Khan, Javed Ali
    Ahmad, Ijaz
    Salama, Ahmed S.
    Daradkeh, Yousef Ibrahim
    Javeed, Danish
    Rehman, Ateeq Ur
    Hamam, Habib
    ELECTRONICS, 2022, 11 (07)