On the number of cycles in 3-connected cubic graphs

被引:12
|
作者
Aldred, REL [1 ]
Thomassen, C [1 ]
机构
[1] TECH UNIV DENMARK,INST MATH,DK-2800 LYNGBY,DENMARK
关键词
D O I
10.1006/jctb.1997.1771
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(n) be the minimum number of cycles present in a 3-connected cubic graph on n vertices. In 1986, C. A. Barefoot, L. Clark, and R. Entringer (Congr. Numer. 53, 1986) showed that f(n) is subexponential and conjectured that f(n) is superpolynomial. We verify this by showing that, for n sufficiently large, 2(n0.17) < f(n) 2(n0.95). (C) 1997 Academic Press.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 50 条
  • [31] THE NUMBER OF CONTRACTIBLE EDGES IN 3-CONNECTED GRAPHS
    OTA, K
    GRAPHS AND COMBINATORICS, 1988, 4 (04) : 333 - 354
  • [32] THE NUMBER OF POLYHEDRAL (3-CONNECTED PLANAR) GRAPHS
    DUIJVESTIJN, AJW
    FEDERICO, PJ
    MATHEMATICS OF COMPUTATION, 1981, 37 (156) : 523 - 532
  • [33] The number of polyhedral (3-connected planar) graphs
    Duijvestijn, AJW
    MATHEMATICS OF COMPUTATION, 1996, 65 (215) : 1289 - 1293
  • [34] On the number of contractible triples in 3-connected graphs
    Kriesell, Matthias
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (01) : 136 - 145
  • [35] The number of removable edges in 3-connected graphs
    Su, JJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (01) : 74 - 87
  • [36] K-MIMIMAL 3-CONNECTED CUBIC GRAPHS
    FOUQUET, JL
    THUILLIER, H
    ARS COMBINATORIA, 1988, 26 : 149 - 190
  • [37] Small cycle covers of 3-connected cubic graphs
    Yang, Fan
    Li, Xiangwen
    DISCRETE MATHEMATICS, 2011, 311 (2-3) : 186 - 196
  • [38] Edge number of 3-connected diameter 3 graphs
    Tsai, MC
    Fu, HL
    I-SPAN 2004: 7TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND NETWORKS, PROCEEDINGS, 2004, : 364 - 367
  • [39] Longest cycles in 3-connected hypergraphs and bipartite graphs
    Kostochka, Alexandr
    Lavrov, Mikhail
    Luo, Ruth
    Zirlin, Dara
    Journal of Graph Theory, 2022, 99 (04): : 758 - 782
  • [40] Contractible Edges and Longest Cycles in 3-Connected Graphs
    Egawa, Yoshimi
    Nakamura, Shunsuke
    GRAPHS AND COMBINATORICS, 2023, 39 (01)