Thermal Conductivity Behavior of Bimodal Nanocrystalline Cu-Ag Material

被引:0
|
作者
Liu Yingguang [1 ]
Zhang Shibing [1 ]
Han Zhonghe [1 ]
机构
[1] North China Elect Power Univ, Baoding 071003, Peoples R China
关键词
bimodal nanocrystalline Cu-Ag; thermal conductivity; grain size; Kapitza resistance; MECHANICAL-PROPERTIES; GRAIN-SIZE; RESISTANCE; DEFORMATION; COPPER; ALLOY;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bimodal nanocrystalline (nc) Cu-Ag composites and nc Cu were prepared by a high pressure sintering method in an argon atmosphere. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thermal conductivity of the samples with an average grain size from 50 nm to 270 nm was measured at 200-400 K by a laser method. The results show that the thermal conductivity of nc Cu-Ag and nc Cu increases with the grain size or temperature increasing. At 300 K, the thermal conductivity of the bimodal nc Cu-Ag with an average grain size of 150 nm is 163.45 W/m.K, which is 40.7% and 38.1% of that of the coarse grain Cu and Ag, respectively. The thermal conductivity of the samples was also measured by the modified Kapitza thermal resistance model and the theoretical calculations are in good agreement with experimental results. The thermal conductivity of bimodal nc Cu-Ag is much lower than that of monocrystalline Cu/Ag bulks. It is concluded that the thermal conductivity of bimodal nc Cu-Ag is increased with the grain size increasing, which exhibits an obvious size effect in a certain grain size range. Key words: bimodal nanocrystalline Cu-Ag; thermal conductivity; grain size; Kapitza resistance
引用
收藏
页码:1478 / 1484
页数:7
相关论文
共 32 条
  • [1] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [2] Strained endotaxial nanostructures with high thermoelectric figure of merit
    Biswas, Kanishka
    He, Jiaqing
    Zhang, Qichun
    Wang, Guoyu
    Uher, Ctirad
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    [J]. NATURE CHEMISTRY, 2011, 3 (02) : 160 - 166
  • [3] Thermal stability of nanocrystalline Fe-Zr alloys
    Darling, K. A.
    VanLeeuwen, B. K.
    Koch, C. C.
    Scattergood, R. O.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (15): : 3572 - 3580
  • [4] Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials
    Dong, Huicong
    Wen, Bin
    Melnik, Roderick
    [J]. SCIENTIFIC REPORTS, 2014, 4 : 7037
  • [5] Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution
    Fan, GJ
    Choo, H
    Liaw, PK
    Lavernia, EJ
    [J]. ACTA MATERIALIA, 2006, 54 (07) : 1759 - 1766
  • [6] Dilute-defect magnetism: Origin of magnetism in nanocrystalline CeO2
    Fernandes, V.
    Mossanek, R. J. O.
    Schio, P.
    Klein, J. J.
    de Oliveira, A. J. A.
    Ortiz, W. A.
    Mattoso, N.
    Varalda, J.
    Schreiner, W. H.
    Abbate, M.
    Mosca, D. H.
    [J]. PHYSICAL REVIEW B, 2009, 80 (03):
  • [7] The conductivity of thin metallic films according to the electron theory of metals
    Fuchs, K
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1938, 34 : 100 - 108
  • [8] Electric properties of Co substituted Ni-Zn ferrites
    Ghodake, J. S.
    Kambale, R. C.
    Salvi, S. V.
    Sawant, S. R.
    Suryavanshi, S. S.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 486 (1-2) : 830 - 834
  • [9] Gurevich V L, 1986, TRANSPORT PHONON SYS, P46
  • [10] Hua Yuchao, 2015, ACTA PHYS SINICA, V64, P244