Large deviations in the reinforced random walk model on trees

被引:1
|
作者
Zhang, Yu [1 ]
机构
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80907 USA
关键词
Reinforced random walks on trees; Large deviation;
D O I
10.1007/s00440-013-0537-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the linearly reinforced and the once-reinforced random walk models in the transient phase on trees. We show the large deviations for the upper tails for both models. We also show the exponential decay for the lower tail in the once-reinforced random walk model. However, the lower tail is in polynomial decay for the linearly reinforced random walk model.
引用
收藏
页码:655 / 678
页数:24
相关论文
共 50 条
  • [41] On the speed of once-reinforced biased random walk on trees
    Collevecchio, Andrea
    Holmes, Mark
    Kious, Daniel
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [42] Large deviations and the random energy model
    Dorlas, TC
    Wedagedera, JR
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (01): : 1 - 15
  • [43] Large Deviations for Random Trees and the Branching of RNA Secondary Structures
    Bakhtin, Yuri
    Heitsch, Christine E.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (01) : 84 - 106
  • [44] Large Deviations for Random Trees and the Branching of RNA Secondary Structures
    Yuri Bakhtin
    Christine E. Heitsch
    Bulletin of Mathematical Biology, 2009, 71 : 84 - 106
  • [45] LARGE DEVIATIONS AND WANDERING EXPONENT FOR RANDOM WALK IN A DYNAMIC BETA ENVIRONMENT
    Balazs, Marton
    Rassoul-Agha, Firas
    Seppalainen, Timo
    ANNALS OF PROBABILITY, 2019, 47 (04): : 2186 - 2229
  • [46] Large Deviations for the Local Times of a Random Walk among Random Conductances in a Growing Box
    Koenig, W.
    Wolff, T.
    MARKOV PROCESSES AND RELATED FIELDS, 2015, 21 (03) : 591 - 638
  • [47] Annealed deviations of random walk in random scenery
    Gantert, Nina
    Koenig, Wolfgang
    Shi, Zhan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (01): : 47 - 76
  • [48] Large deviations for the maximum of a branching random walk with stretched exponential tails
    Dyszewski, Piotr
    Gantert, Nina
    Hoefelsauer, Thomas
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 13
  • [49] DOMINATING POINTS AND THE ASYMPTOTICS OF LARGE DEVIATIONS FOR RANDOM-WALK ON RD
    NEY, P
    ANNALS OF PROBABILITY, 1983, 11 (01): : 158 - 167
  • [50] Moderate deviations for a random walk in random scenery
    Fleischmann, Klaus
    Moerters, Peter
    Wachtel, Vitali
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (10) : 1768 - 1802