Water Cladded Plasmonic Slot Waveguide Vertically Coupled With Si3N4 Photonics

被引:5
|
作者
Dabos, George [1 ]
Ketzaki, Dimitra [1 ]
Manolis, Athanasios [1 ]
Chatzianagnostou, Evaggelia [1 ]
Markey, Laurent [2 ]
Weeber, Jean-Claude [2 ]
Dereux, Alain [2 ]
Giesecke, Anna Lena [3 ]
Porschatis, Caroline [3 ]
Chmielak, Bartos [3 ]
Tsiokos, Dimitris [1 ]
Pleros, Nikos [1 ]
机构
[1] Aristotle Univ Thessaloniki, Ctr Interdisciplinary Res & Innovat, Dept Informat, Thessaloniki 57001, Greece
[2] Univ Bourgogne Franche Comte, CNRS, Lab Interdisciplinaire Carnot Bourgogne, UMR 6303, F-21078 Dijon, France
[3] AMO GmbH, Adv Microelect Ctr Aachen, D-52074 Aachen, Germany
来源
IEEE PHOTONICS JOURNAL | 2018年 / 10卷 / 03期
基金
欧盟地平线“2020”;
关键词
Photonic integrated circuits; plasmonics; surface plasmons; directional coupling; plasmonic waveguide; silicon nitride; vertical integration; SURFACE-PLASMON; MODE CONVERTER; SILICON; COMPONENTS; PLATFORM;
D O I
10.1109/JPHOT.2018.2832461
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a water cladded plasmo-photonic waveguide, by exploiting the directional coupling scheme to vertically divert light from a 360 x 800 nm (height x width) Si3N4 waveguide to a plasmonic slot waveguide, enabling the excitation of a pure plasmonic mode within a 210-nm-wide slot at 1550 nm. The 150-nm-thick plasmonic slot waveguide was deposited on the top of an oxide cladded Si3N4 waveguide exhibiting an experimental plasmonic-to-photonic insertion loss of 2.24 +/- 0.3 dB and a plasmonic propagation length (L-spp) of 10.8 mu m at 1550 nm. The proposed plasmo-photonic waveguide holds a promise as an optical transducer element for highly sensitive and low-cost interferometric biosensors due to the significant phase change achieved per unit propagation length.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Ultralow-Loss Planar Si3N4 Waveguide Polarizers
    Bauters, J. F.
    Heck, M. J. R.
    Dai, D.
    Barton, J. S.
    Blumenthal, D. J.
    Bowers, J. E.
    IEEE PHOTONICS JOURNAL, 2013, 5 (01):
  • [42] Low temperature plasma etching for Si3N4 waveguide applications
    Celo, D.
    Vandusen, R.
    Smy, T.
    Albert, J.
    Tarr, N. G.
    Waldron, P. D.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2008, 26 (02): : 253 - 258
  • [43] Si3N4/SiO2/Si waveguide grating for fluorescent biosensors
    Voirin, G
    Gehriger, D
    Parriaux, OM
    Usievich, B
    INTEGRATED OPTICS DEVICES III, 1999, 3620 : 109 - 116
  • [44] A directional coupling scheme for efficient coupling between Si3N4 photonic and hybrid slot-based plasmonic waveguides
    Ketzaki, D.
    Dabos, G.
    Weeber, J. C.
    Dereux, A.
    Tsiokos, D.
    Pleros, N.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXI, 2017, 10106
  • [45] Fabrication of α-Si3N4 nanobelts assembled by Si3N4 microcrystals on the nanowires via crystallization of amorphous Si3N4 powders
    Hu, Zunlan
    Ge, Yiyao
    Liu, Jian
    Xie, Zhipeng
    CERAMICS INTERNATIONAL, 2019, 45 (12) : 15758 - 15762
  • [46] Characterization of grain alignment in Si3N4(w)/Si3N4 composites
    Zou, LH
    Park, DS
    Cho, BU
    Huang, Y
    Kim, HD
    MATERIALS LETTERS, 2004, 58 (10) : 1587 - 1592
  • [47] The Si3N4 and Si3N4/TiC layered composites by slip casting
    Yeh, CH
    Hon, MH
    CERAMICS INTERNATIONAL, 1997, 23 (04) : 361 - 366
  • [48] Mechanical properties of Si3N4 + β-Si3N4 whisker reinforced ceramics
    Dusza, J.
    Sajgalik, P.
    Journal of the European Ceramic Society, 1992, 9 (01) : 9 - 17
  • [49] Joining of molten salt reaction metallized Si3N4 to Si3N4
    Chen, J
    Pan, W
    Zheng, SY
    Huang, Y
    JOURNAL OF INORGANIC MATERIALS, 2000, 15 (03) : 504 - 510
  • [50] PYROLYTIC SI3N4
    GALASSO, F
    KUNTZ, U
    CROFT, WJ
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1972, 55 (08) : 431 - &