The variation of aerosols, especially dust aerosol, in time and space plays an important role in climate forcing studies. Aerosols can effectively reduce land surface longwave emission and re-emit energy at a colder temperature, which makes it difficult to estimate downwelling surface longwave radiation (DSLR) with satellite data. Using the latest atmospheric radiative transfer code (MODTRAN 5.0), we have simulated the outgoing longwave radiation (OLR) and DSLR under different land surface types and atmospheric profile conditions. The results show that dust aerosol has an obvious warming effect to longwave radiation compared with other aerosols; that aerosol longwave radiative forcing (ALRF) increased with the increasing of aerosol optical depth (AOD); and that the atmospheric water vapor content (WVC) is critical to the understanding of ALRF. A method is proposed to improve the accuracy of DSLR estimation from satellite data for the skies under heavy dust aerosols. The AOD and atmospheric WVC under cloud-free conditions with a relatively simple satellite-based radiation model yielding the high accurate DSLR under heavy dust aerosol are used explicitly as model input to reduce the effects of dust aerosol on the estimation of DSLR. Validations of the proposed model with satellites data and field measurements show that it can estimate the DSLR accurately under heavy dust aerosol skies. The root mean square errors (RMSEs) are 20.4 W/m(2) and 24.2 W/m(2) for Terra and Aqua satellites, respectively, at the Yingke site, and the biases are 2.7 W/m(2) and 9.6 W/m(2), respectively. For the Arvaikheer site, the RMSEs are 23.2 W/m(2) and 19.8 W/m(2) for Terra and Aqua, respectively, and the biases are 7.8 W/m(2) and 10.5 W/m(2), respectively. The proposed method is especially applicable to acquire relatively high accurate DSLR under heavy dust aerosol using MODIS data with available WVC and AOD data.
机构:
Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USALawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
Feldman, D. R.
Worden, M.
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
Stanford Univ, Dept Earth Syst Sci, Stanford, CA USALawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
Worden, M.
Falco, N.
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USALawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
Falco, N.
Dennedy-Frank, P. J.
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USALawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
Dennedy-Frank, P. J.
Chen, J.
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USALawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
Chen, J.
Dafflon, B.
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USALawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
Dafflon, B.
Wainwright, H.
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USALawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
机构:
Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USAPenn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
Clark, J. P.
Clothiaux, E. E.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USAPenn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
Clothiaux, E. E.
Feldstein, S. B.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USAPenn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
Feldstein, S. B.
Lee, S.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USAPenn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
机构:
Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Cheng, Jie
Liang, Shunlin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USABeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Liang, Shunlin
Shi, Jiancheng
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Shi, Jiancheng
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,
2020,
58
(07):
: 4796
-
4802