ON CENTRALIZERS OF PRIME RINGS WITH INVOLUTION

被引:0
|
作者
Ali, S. [1 ]
Dar, N. A. [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci & Arts Rabigh, Dept Math, Jaddeh 21589, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Prime ring; normal ring; involution; left centralizer; centralizer; AUTOMORPHISMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring with involution *. An additive mapping T : R -> R is called a left(respectively right) centralizer if T(xy) = T(x)y (respectively T(xy) = xT(y)) for all x, y is an element of R. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
引用
收藏
页码:1465 / 1475
页数:11
相关论文
共 50 条
  • [31] On generalized derivations and commutativity of prime rings with involution
    Huang, Shuliang
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (08) : 3521 - 3527
  • [32] Action of higher derivations on prime rings with involution
    Ali, Shakir
    Alali, Amal S.
    Varshney, Vaishali
    Rafiquee, Naira Noor
    GEORGIAN MATHEMATICAL JOURNAL, 2025,
  • [34] ON SOME IDENTITIES IN PRIME-RINGS WITH INVOLUTION
    BRESAR, M
    MARTINDALE, WS
    MIERS, CR
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (12) : 4679 - 4697
  • [35] ON CERTAIN DIFFERENTIAL IDENTITIES IN PRIME RINGS WITH INVOLUTION
    Ashraf, Mohammad
    Siddeeque, Mohammad Aslam
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 33 - 44
  • [36] Lie isomorphisms in *-prime GPI rings with involution
    Blau, PS
    Martindale, WS
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02): : 215 - 252
  • [37] On functional identities in prime rings with involution II
    Beidar, KI
    Bresar, M
    Chebotar, MA
    Martindale, WS
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (07) : 3169 - 3183
  • [38] A THEOREM ON DERIVATIONS OF PRIME-RINGS WITH INVOLUTION
    HERSTEIN, IN
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (02): : 356 - 369
  • [39] CENTRALIZING MAPS IN PRIME-RINGS WITH INVOLUTION
    BRESAR, M
    MARTINDALE, WS
    MIERS, CR
    JOURNAL OF ALGEBRA, 1993, 161 (02) : 342 - 357
  • [40] ENDOMORPHISMS WITH CENTRAL VALUES ON PRIME RINGS WITH INVOLUTION
    Oukhtite, L.
    El Mir, H.
    Nejjar, B.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 28 : 127 - 140