Water management in a single cell proton exchange membrane fuel cells with a serpentine flow field

被引:32
|
作者
Hassan, Nik Suhaimi Mat [1 ]
Daud, Wan Ramli Wan [1 ]
Sopian, Kamaruzzaman [1 ]
Sahari, Jaafar [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fuel Cell Inst, Bangi 43600, Selangor, Malaysia
关键词
Water management; PEMFC; Moisture profile; Mass transfer coefficient; Diffusivity; THE-CHANNEL MODEL; 2-PHASE FLOW; EXTERNAL HUMIDIFICATION; MATHEMATICAL-MODEL; TRANSPORT; PEMFC; AIR; TEMPERATURE; TRANSIENT; SIMULATIONS;
D O I
10.1016/j.jpowsour.2009.01.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gas and water management is the key to achieving good performance from a polymer electrolyte membrane fuel cell (PEMFC) stack. Imbalance between production and evaporation rates can result in either flooding of the electrodes or membrane dehydration, both of which severely limit fuel cell performance. In the present study, a mathematical model was developed to evaluate moisture profiles of hydrogen and air flows in the flow field channels of both the anode and the cathode. For model validation, a single fuel cell was designed with an active area of 200 cm(2). Six humidity sensors were installed in the flow fields of both the anode and the cathode at 457 mm, 1266 mm and 2532 mm from the inlets. The experiment was performed using an Arbin Fuel Cell Test Station. The temperature was varied (25 degrees C, 40 degrees C, 50 degrees C and 60 degrees C), while hydrogen and air velocities were fixed at 3 L min(-1) and 6 L min(-1), respectively, during the operation of the single cell. The feed relative humidity at the anode was fixed at 1.0, while the feed relative humidity at the cathode was fixed at 0.005 (dry air). All humidity sensor readings were taken at steady state after 2 h of operation. Model predictions were then compared with experimental results by using the least squares algorithm. The moisture content was found to decrease along the flow field at the anode, but to increase at the cathode. The moisture content profile at the anode was shown to depend on the moisture Peclet number, which decreased with temperature. On the other hand, the moisture profile at the cathode was shown to depend on both the Peclet number and the Damkohler number. The trend of the Peclet number in the cathode followed closely that of the anode. The Damkohler number decreased with temperature, indicating increasing moisture mass transfer with temperature. The moisture profile models were successfully validated by the published data of the estimated overall mass transfer coefficient and moisture effective diffusivity of the same order of magnitude. The strategy of saturating the hydrogen feed and using dry air, as in the present work, has been shown to Successfully prevent water droplet formation in the cathode, and hence prevent flooding. (C) 2009 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:249 / 257
页数:9
相关论文
共 50 条
  • [21] Novel design of a staggered-trap/block flow field for use in serpentine proton exchange membrane fuel cells
    Nguyen, Ba Hieu
    Kim, Hyun Chul
    RENEWABLE ENERGY, 2024, 236
  • [22] Flow dynamic characteristics in flow field of proton exchange membrane fuel cells
    Liu, Xuan
    Guo, Hang
    Ye, Fang
    Ma, Chong Fang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (03) : 1040 - 1051
  • [23] Effects of baffle position in serpentine flow channel on the performance of proton exchange membrane fuel cells
    Guodong Xia
    Xiaoya Zhang
    Dandan Ma
    Chinese Journal of Chemical Engineering, 2024, 69 (05) : 250 - 262
  • [24] Comparison of current distributions in proton exchange membrane fuel cells with interdigitated and serpentine flow fields
    Zhang, Guangsheng
    Guo, Liejin
    Ma, Bin
    Liu, Hongtan
    JOURNAL OF POWER SOURCES, 2009, 188 (01) : 213 - 219
  • [25] Parametric Analysis of a Serpentine Flow Pattern Proton Exchange Membrane Fuel Cell for Optimized Performance
    Ahmed, Aftab
    Mangi, Fareed Hussain
    Kashif, Muhammad
    Chachar, Faheem Akhtar
    Ullah, Zia
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2020, 38 (01) : 69 - 76
  • [26] Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell
    Khazaee, I.
    Sabadbafan, H.
    ENERGY, 2016, 101 : 252 - 265
  • [27] Mass transfer and water management in proton exchange membrane fuel cells with a composite foam-rib flow field
    Gao, Wei
    Li, Qifeng
    Sun, Kai
    Chen, Rui
    Che, Zhizhao
    Wang, Tianyou
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 216
  • [28] Non-isothermal effects of single or double serpentine proton exchange membrane fuel cells
    Wang, Xiao-Dong
    Zhang, Xin-Xin
    Yan, Wei-Mon
    Lee, Duu-Jong
    Su, Ay
    ELECTROCHIMICA ACTA, 2010, 55 (17) : 4926 - 4934
  • [29] Impact of Flow Field Characteristics on Water Management of a Proton Exchange Membrane Fuel Cell Using Magnetic Resonance Imaging
    Dunbar, Z. W.
    Masel, R. I.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 535 - 542
  • [30] Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode
    Quan, P
    Zhou, B
    Sobiesiak, A
    Liu, ZS
    JOURNAL OF POWER SOURCES, 2005, 152 (01) : 131 - 145