Global existence and long-time asymptotics for rotating fluids in a 3D layer

被引:5
|
作者
Gallay, Thierry [1 ]
Roussier-Michon, Violaine [2 ]
机构
[1] Univ Grenoble 1, CNRS, UMR 5582, Inst Fourier, F-38402 St Martin Dheres, France
[2] INSA Toulouse, CNRS, UMR 5219, Inst Math, F-31077 Toulouse 4, France
关键词
Navier-Stokes equation; Rotating fluids; Global existence; Long-time asymptotics; Three-dimensional layer; Oseen vortex; NAVIER-STOKES EQUATION; VORTICITY EQUATIONS; INITIAL DATA; STABILITY;
D O I
10.1016/j.jmaa.2009.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Navier-Stokes-Coriolis system is a simple model for rotating fluids, which allows to study the influence of the Coriolis force on the dynamics of three-dimensional flows. In this paper, we consider the NSC system in an infinite three-dimensional layer delimited by two horizontal planes, with periodic boundary conditions in the vertical direction. If the angular velocity parameter is sufficiently large, depending on the initial data, we prove the existence of global, infinite-energy solutions with nonzero circulation number. We also show that these solutions converge toward two-dimensional Lamb-Oseen vortices as t -> infinity. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:14 / 34
页数:21
相关论文
共 50 条
  • [31] Long-time 3D CFD modeling of sedimentation with dredging in a hydropower reservoir
    Olsen, Nils Reidar B.
    Hillebrand, Gudrun
    JOURNAL OF SOILS AND SEDIMENTS, 2018, 18 (09) : 3031 - 3040
  • [32] Global existence and long-time behavior of solutions for fully nonlocal Boussinesq equations
    Zhang, Xiaoju
    Zheng, Kai
    Lu, Yao
    Ma, Huanhuan
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (09): : 5406 - 5424
  • [33] Global existence and long-time behavior of solutions to a class of degenerate parabolic equations
    Anh, Cung The
    Hung, Phan Quoc
    ANNALES POLONICI MATHEMATICI, 2008, 93 (03) : 217 - 230
  • [34] Long-time behavior of 3D stochastic planetary geostrophic viscous model
    Dong, Zhao
    Zhang, Rangrang
    STOCHASTICS AND DYNAMICS, 2018, 18 (05)
  • [35] Semidiscretization and long-time asymptotics of nonlinear diffusion equations
    Carrillo, Jose A.
    Di Francesco, Marco
    Gualdani, Maria P.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 : 21 - 53
  • [36] Long-time asymptotics of kinetic models of granular flows
    Li, HL
    Toscani, G
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 172 (03) : 407 - 428
  • [37] Long-time asymptotics for the Toda lattice in the soliton region
    Krueger, Helge
    Teschl, Gerald
    MATHEMATISCHE ZEITSCHRIFT, 2009, 262 (03) : 585 - 602
  • [38] Long-time asymptotics with geometric singularities in the spatial variables
    Krainer, T
    Schulze, BW
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS: ISRAEL MATHEMATICAL CONFERENCE PROCEEDINGS, 2004, 364 : 103 - 126
  • [39] LONG-TIME ASYMPTOTICS FOR THE CAMASSA-HOLM EQUATION
    De Monvel, Anne Boutet
    Kostenko, Aleksey
    Shepelsky, Dmitry
    Teschl, Gerald
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) : 1559 - 1588
  • [40] Long-time asymptotics for the Toda lattice in the soliton region
    Helge Krüger
    Gerald Teschl
    Mathematische Zeitschrift, 2009, 262 : 585 - 602