Stability of the conical Kahler-Ricci flows on Fano manifolds

被引:0
|
作者
Liu, Jiawei [1 ]
Zhang, Xi [2 ,3 ]
机构
[1] Otto von Guericke Univ, Inst Anal & Numer, Univ Pl 2, D-39106 Magdeburg, Germany
[2] Chinese Acad Sci, Key Lab Wu Wen Tsun Math, Hefei, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
关键词
Stability; conical Kahler-Einstein metric; conical Kahler-Ricci flow; twisted Kahler-Ricci flow; SCALAR CURVATURE; CONVERGENCE; METRICS; SINGULARITIES; UNIQUENESS;
D O I
10.1080/03605302.2020.1857403
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study stability of the conical Kahler-Ricci flows on Fano manifolds. That is, if there exists a conical Kahler-Einstein metric with cone angle 2 pi beta along the divisor, then for any beta' sufficiently close to beta, the corresponding conical Kahler-Ricci flow converges to a conical Kahler-Einstein metric with cone angle 2 pi beta' along the divisor. Here, we only use the condition that the Log Mabuchi energy is bounded from below. This is a weaker condition than the properness that we have adopted to study the convergence. As applications, we give parabolic proofs of Donaldson's openness theorem and his conjecture for the existence of conical Kahler-Einstein metrics with positive Ricci curvatures.
引用
收藏
页码:953 / 1004
页数:52
相关论文
共 50 条
  • [21] On the collapsing of Calabi-Yau manifolds and Kahler-Ricci flows
    Li, Yang
    Tosatti, Valentino
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (800): : 155 - 192
  • [22] Pluripotential Kahler-Ricci flows
    Guedj, Vincent
    Lu, Chinh H.
    Zeriahi, Ahmed
    GEOMETRY & TOPOLOGY, 2020, 24 (03) : 1225 - 1296
  • [23] On a twisted conical Kahler-Ricci flow
    Zhang, Yashan
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (01) : 69 - 98
  • [24] Kahler-Ricci solitons on toric Fano orbifolds
    Shi, Yalong
    Zhu, Xiaohua
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1241 - 1251
  • [25] Special Kahler-Ricci potentials on compact Kahler manifolds
    Derdzinski, A.
    Maschler, G.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 593 : 73 - 116
  • [26] Cusp Kahler-Ricci flow on compact Kahler manifolds
    Liu, Jiawei
    Zhang, Xi
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 289 - 306
  • [27] Convergence of the Kahler-Ricci flow on noncompact Kahler manifolds
    Chau, A
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2004, 66 (02) : 211 - 232
  • [28] Stability of Kahler-Ricci Flow
    Chen, Xiuxiong
    Li, Haozhao
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 306 - 334
  • [29] Uniqueness of Kahler-Ricci solitons on compact Kahler manifolds
    Tian, G
    Zhu, XH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11): : 991 - 995
  • [30] Rotational symmetry of conical Kahler-Ricci solitons
    Chodosh, Otis
    Fong, Frederick Tsz-Ho
    MATHEMATISCHE ANNALEN, 2016, 364 (3-4) : 777 - 792