Stability of the conical Kahler-Ricci flows on Fano manifolds

被引:0
|
作者
Liu, Jiawei [1 ]
Zhang, Xi [2 ,3 ]
机构
[1] Otto von Guericke Univ, Inst Anal & Numer, Univ Pl 2, D-39106 Magdeburg, Germany
[2] Chinese Acad Sci, Key Lab Wu Wen Tsun Math, Hefei, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
关键词
Stability; conical Kahler-Einstein metric; conical Kahler-Ricci flow; twisted Kahler-Ricci flow; SCALAR CURVATURE; CONVERGENCE; METRICS; SINGULARITIES; UNIQUENESS;
D O I
10.1080/03605302.2020.1857403
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study stability of the conical Kahler-Ricci flows on Fano manifolds. That is, if there exists a conical Kahler-Einstein metric with cone angle 2 pi beta along the divisor, then for any beta' sufficiently close to beta, the corresponding conical Kahler-Ricci flow converges to a conical Kahler-Einstein metric with cone angle 2 pi beta' along the divisor. Here, we only use the condition that the Log Mabuchi energy is bounded from below. This is a weaker condition than the properness that we have adopted to study the convergence. As applications, we give parabolic proofs of Donaldson's openness theorem and his conjecture for the existence of conical Kahler-Einstein metrics with positive Ricci curvatures.
引用
收藏
页码:953 / 1004
页数:52
相关论文
共 50 条
  • [1] Conical Kahler-Ricci flows on Fano manifolds
    Liu, Jiawei
    Zhang, Xi
    ADVANCES IN MATHEMATICS, 2017, 307 : 1324 - 1371
  • [2] Regularity of Kahler-Ricci flows on Fano manifolds
    Tian, Gang
    Zhang, Zhenlei
    ACTA MATHEMATICA, 2016, 216 (01) : 127 - 176
  • [3] Twisted and conical Kahler-Ricci solitons on Fano manifolds
    Jin, Xishen
    Liu, Jiawei
    Zhang, Xi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2396 - 2421
  • [4] On the Kahler-Ricci flow on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (02) : 573 - 581
  • [5] The Kahler-Ricci Flow on Fano Manifolds
    Cao, Huai-Dong
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 239 - 297
  • [6] The Conical Kahler-Ricci Flow with Weak Initial Data on Fano Manifolds
    Liu, Jiawei
    Zhang, Xi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (17) : 5343 - 5384
  • [7] Convergence of the Kahler-Ricci flow on Fano manifolds
    Tian, Gang
    Zhu, Xiaohua
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 678 : 223 - 245
  • [8] Kahler-Ricci flow on stable Fano manifolds
    Tosatti, Valentino
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 640 : 67 - 84
  • [9] Compactness of Kahler-Ricci solitons on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 305 - 316
  • [10] Smooth approximations of the conical Kahler-Ricci flows
    Wang, Yuanqi
    MATHEMATISCHE ANNALEN, 2016, 365 (1-2) : 835 - 856