Squeezed superbananas and improved superbanana transport in stellarators

被引:0
|
作者
Shaing, KC [1 ]
机构
[1] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
关键词
D O I
10.1063/1.1482376
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is well known that the size of the superbananas in stellarators scales with the minor radius. Thus, in some stellarator configurations superbananas may not be confined. To improve stellarator confinement, a theory is developed to include the effects of the magnetic well and the radial gradient of the radial electric field to squeeze superbananas. It is found that the size of the superbananas is reduced by a factor of S-1/2, where S is the superbanana squeezing factor that depends on the magnetic well depth and the radial gradient of the radial electric field. The corresponding fraction of the superbanana is increased by a factor of S-1/2. The diffusive loss is thus reduced by a factor of S-3/2. (C) 2002 American Institute of Physics.
引用
收藏
页码:2865 / 2867
页数:3
相关论文
共 50 条
  • [21] Turbulent SOL transport in stellarators and tokamaks
    Endler, M
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1999, 266 : 84 - 90
  • [22] Transport barriers and bifurcation characteristics in stellarators
    Fujisawa, A
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 : A1 - A18
  • [23] Evaluation of 1/ν neoclassical transport in stellarators
    Nemov, VV
    Kasilov, SV
    Kernbichler, W
    Heyn, MF
    [J]. PHYSICS OF PLASMAS, 1999, 6 (12) : 4622 - 4632
  • [24] Enhanced superbanana transport caused by chaotic scattering across an asymmetric separatrix
    Dubin, Daniel H. E.
    Kabantsev, A. A.
    Driscoll, C. F.
    [J]. PHYSICS OF PLASMAS, 2012, 19 (05)
  • [25] Influence of magnetic topology on transport and stability in stellarators
    Castejón, F
    Fujisawa, A
    Ida, K
    Talmadge, JN
    Estrada, T
    López-Bruna, D
    Hidalgo, C
    Krupnik, L
    Melnikov, A
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 : B53 - B69
  • [26] Evolution of discontinuous solutions to transport equations in stellarators
    Kovrizhnykh, L. M.
    [J]. PLASMA PHYSICS REPORTS, 2010, 36 (08) : 665 - 675
  • [27] The second adiabatic invariant and neoclassical transport in stellarators
    Nemov, VV
    [J]. PHYSICS OF PLASMAS, 1999, 6 (01) : 122 - 129
  • [28] On radiative density limits and anomalous transport in stellarators
    Wobig, H
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2000, 42 (09) : 931 - 948
  • [29] Momentum correction techniques for neoclassical transport in stellarators
    Maassberg, H.
    Beidler, C. D.
    Turkin, Y.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (07)
  • [30] Modeling of energetic particle transport in optimized stellarators
    Bader, A.
    Anderson, D. T.
    Drevlak, M.
    Faber, B. J.
    Hegna, C. C.
    Henneberg, S.
    Landreman, M.
    Schmitt, J. C.
    Suzuki, Y.
    Ware, A.
    [J]. NUCLEAR FUSION, 2021, 61 (11)