Effect of confinement on the solid-liquid coexistence of Lennard-Jones Fluid

被引:13
|
作者
Das, Chandan K. [1 ]
Singh, Jayant K. [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Kanpur 208016, Uttar Pradesh, India
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 139卷 / 17期
关键词
EXPANDED ENSEMBLE SIMULATIONS; HISTOGRAM REWEIGHTING METHOD; MONTE-CARLO-SIMULATION; PHASE-TRANSITIONS; SLIT PORES; MOLECULAR SIMULATION; FREEZING/MELTING PHENOMENA; COLLOIDAL SPHERES; POROUS GLASSES; GIBBS ENSEMBLE;
D O I
10.1063/1.4827397
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solid-liquid coexistence of a Lennard-Jones fluid confined in slit pores of variable pore size, H, is studied using molecular dynamics simulations. Three-stage pseudo-supercritical transformation path of Grochola [J. Chem. Phys. 120(5), 2122 (2004)] and multiple histogram reweighting are employed for the confined system, for various pore sizes ranging from 20 to 5 molecular diameters, to compute the solid-liquid coexistence. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid-liquid phases under confinement via one or more intermediate states without any first order phase transition among them. Thermodynamic melting temperature is found to oscillate with wall separation, which is in agreement with the behavior seen for kinetic melting temperature evaluated in an earlier study. However, thermodynamic melting temperature for almost all wall separations is higher than the bulk case, which is contrary to the behavior seen for the kinetic melting temperature. The oscillation founds to decay at around H = 12, and beyond that pore size dependency of the shift in melting point is well represented by the Gibbs-Thompson equation. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Liquid-solid phase transition in the Lennard-Jones system
    Khrapak, Sergey A.
    Chaudhuri, Manis
    Morfill, Gregor E.
    PHYSICAL REVIEW B, 2010, 82 (05)
  • [32] Equation of State for Lennard-Jones Fluid
    G. Sh. Boltachev
    V. G. Baidakov
    High Temperature, 2003, 41 : 270 - 272
  • [33] Characteristic Curves of the Lennard-Jones Fluid
    Simon Stephan
    Ulrich K. Deiters
    International Journal of Thermophysics, 2020, 41
  • [34] Equation of State for the Lennard-Jones Fluid
    Thol, Monika
    Rutkai, Gabor
    Koester, Andreas
    Lustig, Rolf
    Span, Roland
    Vrabec, Jadran
    JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2016, 45 (02)
  • [35] EQUATION OF STATE FOR A LENNARD-JONES FLUID
    TOXVAERD, S
    PRAESTGAARD, E
    JOURNAL OF CHEMICAL PHYSICS, 1970, 53 (06): : 2389 - +
  • [36] METASTABLE STATES IN LENNARD-JONES FLUID
    RAVECHE, HJ
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1976, 279 (OCT15) : 36 - 42
  • [37] On the thermodynamic properties of the Lennard-Jones fluid
    Robles, M
    de Haro, ML
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (24) : 5528 - 5534
  • [38] EQUILIBRIUM PROPERTIES OF THE LENNARD-JONES FLUID
    SINHA, DN
    SINHA, SK
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1981, 19 (05) : 427 - 430
  • [39] EQUATION OF STATE FOR THE LENNARD-JONES FLUID
    NICOLAS, JJ
    GUBBINS, KE
    STREETT, WB
    TILDESLEY, DJ
    MOLECULAR PHYSICS, 1979, 37 (05) : 1429 - 1454
  • [40] SPINODAL DECOMPOSITION IN A LENNARD-JONES FLUID
    EVANS, R
    TELODAGAMA, MM
    MOLECULAR PHYSICS, 1979, 38 (03) : 687 - 698