Asymptotic convergence of solutions for Laplace reaction-diffusion equations

被引:0
|
作者
Iwasaki, Satoru [1 ]
Yagi, Atsushi [2 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Informat & Phys Sci, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Suita, Osaka 5650871, Japan
关键词
Diffusion equations in composite media; Lojasiewicz-Simon inequality; Asymptotic convergence; TRANSIENT CONDUCTION; GRADIENT INEQUALITY; COMPOSITE SLAB;
D O I
10.1016/j.nonrwa.2019.102986
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the initial-boundary value problem for a Laplace reaction-diffusion equation. After constructing local solutions by using the theory of abstract degenerate evolution equations of parabolic type, we show asymptotic convergence of bounded global solutions if they exist under the assumption that the reaction function is analytic in neighborhoods of their w-limit sets. Reduction of degenerate evolution equation to multivalued evolution equation enables us to use the theory of the infinite-dimensional Lojasiewicz-Simon gradient inequality. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] LAPLACE ASYMPTOTICS FOR REACTION-DIFFUSION EQUATIONS
    BENAROUS, G
    ROUAULT, A
    PROBABILITY THEORY AND RELATED FIELDS, 1993, 97 (1-2) : 259 - 285
  • [2] GLOBAL EXISTENCE FOR LAPLACE REACTION-DIFFUSION EQUATIONS
    Favini, Angelo
    Yagi, Atsushi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (05): : 1473 - 1493
  • [3] Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions
    Pao, CV
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (01) : 225 - 238
  • [4] Existence and Asymptotic Stability of Periodic Solutions of the Reaction-Diffusion Equations in the Case of a Rapid Reaction
    Nefedov, N. N.
    Nikulin, E. I.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2018, 25 (01) : 88 - 101
  • [5] Asymptotic behaviour of nonlocal reaction-diffusion equations
    Anguiano, M.
    Kloeden, P. E.
    Lorenz, T.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) : 3044 - 3057
  • [6] Asymptotic analysis for reaction-diffusion equations with absorption
    Wanjuan Du
    Zhongping Li
    Boundary Value Problems, 2012
  • [7] ASYMPTOTIC DEAD CORES FOR REACTION-DIFFUSION EQUATIONS
    BOBISUD, LE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 147 (01) : 249 - 262
  • [8] Asymptotic analysis for reaction-diffusion equations with absorption
    Du, Wanjuan
    Li, Zhongping
    BOUNDARY VALUE PROBLEMS, 2012, : 1 - 11
  • [9] Asymptotic Behavior of Stochastic Reaction-Diffusion Equations
    Wen, Hao
    Wang, Yuanjing
    Liu, Guangyuan
    Liu, Dawei
    MATHEMATICS, 2024, 12 (09)
  • [10] ASYMPTOTIC BEHAVIOR OF ENTIRE SOLUTIONS TO REACTION-DIFFUSION EQUATIONS IN AN INFINITE STAR GRAPH
    Jimbo, Shuichi
    Morita, Yoshihisa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (09) : 4013 - 4039