Protocol for a scoping review of multi-omic analysis for rare diseases

被引:2
|
作者
Kerr, Katie [1 ]
McAneney, Helen [1 ]
McKnight, Amy Jayne [1 ]
机构
[1] Queens Univ Belfast, Ctr Publ Hlth, Belfast, Antrim, North Ireland
来源
BMJ OPEN | 2019年 / 9卷 / 05期
基金
英国医学研究理事会;
关键词
biomarker; epigenomics; multi-omics; rare disease; transcriptomics;
D O I
10.1136/bmjopen-2018-026278
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction The development of next generation sequencing technology has enabled cost-efficient, large scale, multiple 'omic' analysis, including epigenomic, genomic, metabolomic, phenomic, proteomic and transcriptomic research. These integrated approaches hold significant promise for rare disease research, with the potential to aid biomarker discovery, improve our understanding of disease pathogenesis and identify novel therapeutic targets. In this paper we outline a systematic approach for a scoping review designed to evaluate what primary research has been performed to date on multi-omics and rare disease. Methods and analysis This protocol was designed using the Joanna Briggs Institute methodology for scoping reviews. Databases to be searched will include: MEDLINE, EMBASE, PubMed, Web of Science, Scopus and Google Scholar for primary studies relevant to the key terms 'multi-omics' and 'rare disease', published prior to 30th December 2018. Grey literature databases GreyLit and OpenGrey will also be searched, as well as reverse citation screening of relevant articles and forward citation searching using Web of Science Cited Reference Search Tool. Data extraction will be performed using customised forms and a narrative synthesis of the results will be presented. Ethics and dissemination As a secondary analysis study with no primary data generated, this scoping review does not require ethical approval. We anticipate this review will highlight a gap in rare disease research and provide direction for novel research. The completed review will be submitted for publication in peer-reviewed journals and presented at relevant conferences discussing rare disease research and/or molecular strategies.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] High-quality multi-omic analysis of FFPE samples
    Lund, Jim
    Bailey, Shannon
    Ekram, Muhammad
    Shahbazian, David
    Memeo, Lorenzo
    Hofman, Paul
    Williams, Richard
    Gulcher, Jeff
    [J]. CANCER RESEARCH, 2020, 80 (16)
  • [42] Protocol for differential multi-omic analyses of distinct cell types in the mouse cerebral cortex
    Meka, Durga Praveen
    Richter, Melanie
    Ruecker, Tabitha
    Voss, Hannah
    Rissiek, Anne
    Krisp, Christoph
    Kumar, Nisha Hemandhar
    Schwanke, Birgit
    Fornasiero, Eugenio F.
    Schlueter, Hartmut
    de Anda, Froylan Calderon
    [J]. STAR PROTOCOLS, 2024, 5 (01):
  • [43] Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney
    Eales, James M.
    Jiang, Xiao
    Xu, Xiaoguang
    Saluja, Sushant
    Akbarov, Artur
    Cano-Gamez, Eddie
    McNulty, Michelle T.
    Finan, Christopher
    Guo, Hui
    Wystrychowski, Wojciech
    Szulinska, Monika
    Thomas, Huw B.
    Pramanik, Sanjeev
    Chopade, Sandesh
    Prestes, Priscilla R.
    Wise, Ingrid
    Evangelou, Evangelos
    Salehi, Mahan
    Shakanti, Yusif
    Ekholm, Mikael
    Denniff, Matthew
    Nazgiewicz, Alicja
    Eichinger, Felix
    Godfrey, Bradley
    Antczak, Andrzej
    Glyda, Maciej
    Krol, Robert
    Eyre, Stephen
    Brown, Jason
    Berzuini, Carlo
    Bowes, John
    Caulfield, Mark
    Zukowska-Szczechowska, Ewa
    Zywiec, Joanna
    Bogdanski, Pawel
    Kretzler, Matthias
    Woolf, Adrian S.
    Talavera, David
    Keavney, Bernard
    Maffia, Pasquale
    Guzik, Tomasz J.
    O'Keefe, Raymond T.
    Trynka, Gosia
    Samani, Nilesh J.
    Hingorani, Aroon
    Sampson, Matthew G.
    Morris, Andrew P.
    Charchar, Fadi J.
    Tomaszewski, Maciej
    [J]. NATURE GENETICS, 2021, 53 (05) : 630 - +
  • [44] A multi-omic machine learning analysis to predict ALS disease progression
    Patel, Devanshi
    Sharma, Rhiya
    Jafarpour, Laleh
    Sheppard, Ashlyn
    Shen, Jie
    Chai, Charles
    [J]. MUSCLE & NERVE, 2022, 66 : S14 - S15
  • [45] Multi-omic profiling in pulmonary arterial hypertension
    Otero-Nunez, Pablo
    Rhodes, Christopher
    Wharton, John
    Swietlik, Emilia
    Kariotis, Sokratis
    Harbaum, Lars
    Dunning, Mark
    Elinoff, Jason
    Errington, Niamh
    Thomson, Roger
    Iremonger, James
    Coghlan, Gerry
    Corris, Paul
    Howard, Luke
    Kiely, David
    Church, Colin
    Pepke-Zaba, Joanna
    Toshner, Mark
    Wort, Stephen
    Desai, Ankit
    Humbert, Marc
    Nichols, William
    Southgate, Laura
    Tregouet, David-Alexandre
    Trembath, Richard
    Prokopenko, Inga
    Graf, Stefan
    Morrell, Nicholas
    Wang, Dennis
    Lawrie, Allan
    Wilkins, Martin
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2020, 56
  • [46] Multi-omic considerations: Exploring LBgard blood tubes for proteomic analysis
    Vasquez, Jacob M.
    Desharnais, Joel
    [J]. CANCER RESEARCH, 2020, 80 (16)
  • [47] Multi-omic Pathway and Network Analysis to Identify Biomakers for Hepatocellular Carcinoma
    Barefoot, Megan E.
    Varghese, Rency S.
    Zhou, Yuan
    Di Poto, Cristina
    Ferrarini, Alessia
    Ressom, Habtom W.
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 1350 - 1354
  • [48] Identification of shared molecular signatures of ageing and metabolic diseases using multi-omic data
    Michalettou, Theodora Dafni
    Hong, Mun-Gwan
    Fernandez, Juan
    Sharma, Sapna
    Brorsson, Caroline Anna
    Koivula, Robert
    Adamski, Jerzy
    Brunak, Soren
    Dermitzakis, Emmanouil
    Franks, Paul
    McCarthy, Mark
    Pearson, Ewan
    Schwenk, Jochen
    Walker, Mark
    Brown, Andrew
    Vinuela, Ana
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 701 - 701
  • [49] A multi-omic trip through the human gut
    Quinn, Robert A. A.
    Martin, Christian
    Guzior, Douglas V. V.
    [J]. NATURE METABOLISM, 2023, 5 (05) : 720 - 721
  • [50] Multi-omic profiling refines the molecular view
    Hurst, Carolyn D.
    Knowles, Margaret A.
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2018, 15 (04) : 203 - 204