共 50 条
On the machining of selective laser melting CoCrFeMnNi high-entropy alloy
被引:96
|作者:
Guo, Jiang
[1
]
Goh, Minhao
[2
]
Zhu, Zhiguang
[2
]
Lee, Xiaohua
[2
]
Nai, Mui Ling Sharon
[2
]
Wei, Jun
[2
]
机构:
[1] Dalian Univ Technol, Minist Educ, Key Lab Precis & Nontradit Machining Technol, Dalian 116024, Peoples R China
[2] Singapore Inst Mfg Technol, 73 Nanyang Dr, Singapore 637662, Singapore
关键词:
High-entropy alloy (HEA);
CoCrFeMnNi;
Selective laser melting;
Machining;
Surface integrity;
MECHANICAL-PROPERTIES;
SURFACE INTEGRITY;
AL-12SI ALLOY;
HIGH-STRENGTH;
MICROSTRUCTURE;
CRMNFECONI;
D O I:
10.1016/j.matdes.2018.05.012
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
High-entropy alloys (HEAs) have attracted significant attention due to its superior low temperature mechanical properties. Recently, with the success of 3D additive manufacturing (AM) of CoCrFeMnNi HEA by selective laser melting (SLM), the fabrication of complex components in one step became possible. However, due to the low surface quality, post-machining is necessary. Up to date, there is no study that comprehensively reported the machinability of SLM CoCrFeMnNi HEA. Hence, this research presents a pioneer work on the machinability study of SLM CoCrFeMnNi HEA by commonly used mechanical, thermal and electro chemical machining processes. The surface and subsurface quality generated by different machining processes were quantitatively evaluated from the aspects of surface morphology and roughness, microhardness, residual stress and subsurface quality. The results show that milling and grinding smoothed the surface, enhanced surface microhardness but induced tool marks and compressed residual stresses. Wire EDM flattened the surface but caused a heat melt layer resulting in the increase of the tensile residual stress and surface microhardness. EP released the residual stress and with the combination of mechanical and electrical processes, smoother surfaces were obtained and subsurface damages were removed. A super smooth surface without subsurface damages was achieved by mechanical polishing. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:211 / 220
页数:10
相关论文