Automatic Generation of Air Quality Index Textual Forecasts Using a Data-To-Text Approach

被引:6
|
作者
Ramos-Soto, A. [1 ]
Bugarin, A. [1 ]
Barro, S. [1 ]
Gallego, N. [2 ]
Rodriguez, C. [2 ]
Fraga, I. [2 ]
Saunders, A. [2 ]
机构
[1] Univ Santiago de Compostela, Res Ctr Informat Technol CiTIUS, Santiago De Compostela, Spain
[2] Xunta Galicia, MeteoGalicia, Santiago De Compostela, Spain
关键词
Linguistic descriptions of data; Natural language generation; Data-to-text; Air quality state; WEATHER FORECASTS;
D O I
10.1007/978-3-319-24598-0_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a data-to-text service which automatically produces textual forecasts about the air quality state for every municipality in Galicia (NW Spain) for the Galician Meteorology Agency (MeteoGalicia). We discuss the context and the details about the conception of the service, as well as a technical and formal description of the solution adopted. This approach complements and is integrated into GALiWeather, a public service which currently issues in Meteogalicia's web page daily textual short-term weather forecasts including information about the sky state, precipitation, wind and temperatures.
引用
收藏
页码:164 / 174
页数:11
相关论文
共 50 条
  • [41] Reinforcement Learning with Imbalanced Dataset for Data-to-Text Medical Report Generation
    Nishino, Toru
    Ozaki, Ryota
    Momoki, Yohei
    Taniguchi, Tomoki
    Kano, Ryuji
    Nakano, Norihisa
    Tagawa, Yuki
    Taniguchi, Motoki
    Ohkuma, Tomoko
    Nakamura, Keigo
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 2223 - 2236
  • [42] Data-to-Text Generation Improves Decision-Making Under Uncertainty
    Gkatzia, Dimitra
    Lemon, Oliver
    Rieser, Verena
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2017, 12 (03) : 10 - 17
  • [43] Plan-then-Generate: Controlled Data-to-Text Generation via Planning
    Su, Yixuan
    Vandyke, David
    Wang, Sihui
    Fang, Yimai
    Collier, Nigel
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 895 - 909
  • [44] Narrative context-based data-to-text generation for ambient intelligence
    Jang, Jungsun
    Noh, Hyungjong
    Lee, Yeonsoo
    Pantel, Soo-Min
    Rim, Haechang
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (04) : 1421 - 1429
  • [45] Linguistic Descriptions for Automatic Generation of Textual Short-Term Weather Forecasts on Real Prediction Data
    Ramos-Soto, Alejandro
    Jose Bugarin, Alberto
    Barro, Senen
    Taboada, Juan
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (01) : 44 - 57
  • [46] Enhancing Neural Data-To-Text Generation Models with External Background Knowledge
    Chen, Shuang
    Wang, Jinpeng
    Feng, Xiaocheng
    Jiang, Feng
    Qin, Bing
    Lin, Chin-Yew
    [J]. 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 3022 - 3032
  • [47] Bridging the Structural Gap Between Encoding and Decoding for Data-To-Text Generation
    Zhao, Chao
    Walker, Marilyn
    Chaturvedi, Snigdha
    [J]. 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 2481 - 2491
  • [48] Narrative context-based data-to-text generation for ambient intelligence
    Jungsun Jang
    Hyungjong Noh
    Yeonsoo Lee
    Soo-Min Pantel
    Haechang Rim
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 1421 - 1429
  • [49] Creating a Corpus for Russian Data-to-Text Generation Using Neural Machine Translation and Post-Editing
    Shimorina, Anastasia
    Khasanova, Elena
    Gardent, Claire
    [J]. 7TH WORKSHOP ON BALTO-SLAVIC NATURAL LANGUAGE PROCESSING (BSNLP'2019), 2019, : 44 - 49
  • [50] Stylized Data-to-text Generation: A Case Study in the E-Commerce Domain
    Jing, Liqiang
    Song, Xuemeng
    Lin, Xuming
    Zhao, Zhongzhou
    Zhou, Wei
    Nie, Liqiang
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (01)