On the Three-Dimensional Fractional-Order Henon Map with Lorenz-Like Attractors

被引:15
|
作者
Khennaoui, Amina-Aicha [1 ]
Ouannas, Adel [2 ]
Odibat, Zaid [3 ]
Viet-Thanh Pham [4 ,5 ]
Grassi, Giuseppe [6 ]
机构
[1] Univ Larbi Ben Mhidi, Lab Dynam Syst & Control, Oum El Bouaghi, Algeria
[2] Univ Larbi Tebessi, Lab Math Informat & Syst LAMIS, Tebessa 12002, Algeria
[3] Al Balqa Appl Univ, Dept Math, Fac Sci, Salt 19117, Jordan
[4] Phenikaa Univ, Phenikaa Inst Adv Study PIAS, Fac Elect & Elect Engn, Hanoi 100000, Vietnam
[5] A&A Green Phoenix Grp, Phenikaa Res & Technol Inst PRATI, 167 Hoang Ngan, Hanoi 100000, Vietnam
[6] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
来源
关键词
Fractional discrete-time calculus; Caputo-like difference operator; chaos; Henon-like map; control; synchronization; CHAOS SYNCHRONIZATION; STABILITY; COEXISTENCE; SYSTEMS; DIFFEOMORPHISMS; BIFURCATIONS; CALCULUS; SCHEME;
D O I
10.1142/S021812742050217X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A three-dimensional (3D) Henon map of fractional order is proposed in this paper. The dynamics of the suggested map are numerically illustrated for different fractional orders using phase plots and bifurcation diagrams. Lorenz-like attractors for the considered map are realized. Then, using the linear fractional-order systems stability criterion, a controller is proposed to globally stabilize the fractional-order Henon map. Furthermore, synchronization control scheme has been designed to exhibit a synchronization behavior between a given 2D fractional-order chaotic map and the 3D fractional-order Henon map. Numerical simulations are also performed to verify the main results of the study.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Numerical Study of Discrete Lorenz-Like Attractors
    Alexey Kazakov
    Ainoa Murillo
    Arturo Vieiro
    Kirill Zaichikov
    Regular and Chaotic Dynamics, 2024, 29 : 78 - 99
  • [22] THE NUMBER OF PERIODS IN ONE-DIMENSIONAL GAP MAP AND LORENZ-LIKE MAP
    XIE, FG
    HAO, BL
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 23 (02) : 175 - 180
  • [23] Multitudinous potential hidden Lorenz-like attractors coined
    Wang, Haijun
    Ke, Guiyao
    Pan, Jun
    Hu, Feiyu
    Fan, Hongdan
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (03): : 359 - 368
  • [24] Multitudinous potential hidden Lorenz-like attractors coined
    Haijun Wang
    Guiyao Ke
    Jun Pan
    Feiyu Hu
    Hongdan Fan
    The European Physical Journal Special Topics, 2022, 231 : 359 - 368
  • [25] Lyapunov dimension of attractors of the Lorenz-like differential equations
    Leonov, G. A.
    Seledzhi, S. M.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI 2016), 2016, : 119 - 121
  • [26] STRANGE ATTRACTORS IN A PERIODICALLY PERTURBED LORENZ-LIKE EQUATION
    Chen, Fengjuan
    Zhou, Liqun
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2013, 3 (02): : 123 - 132
  • [27] Numerical Study of a Three-Dimensional Henon Map
    Casas, Gabriela A.
    Rech, Paulo C.
    CHINESE PHYSICS LETTERS, 2011, 28 (01)
  • [28] BIFURCATION ANALYSIS OF THE THREE-DIMENSIONAL HENON MAP
    Zhao, Ming
    Li, Cuiping
    Wang, Jinliang
    Feng, Zhaosheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (03): : 625 - 645
  • [29] The Synchronization of Three Fractional-Order Lorenz Chaotic Systems
    Yu, Yong-Guang
    Wen, Guo-Guang
    Li, Han-Xiong
    Diao, Miao
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (03) : 379 - 386
  • [30] APPLIED SYMBOLIC DYNAMICS FOR THE LORENZ-LIKE MAP
    ZHENG, WM
    PHYSICAL REVIEW A, 1990, 42 (04): : 2076 - 2080