Representations of rank 3 algebras

被引:1
|
作者
Benkart, Georgia [1 ]
Labra, Alicia
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Chile, Fac Sci, Dept Math, Santiago, Chile
关键词
D O I
10.1080/00927870600637157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The class of rank 3 algebras includes the Jordan algebra of a symmetric bilinear form, the trace zero elements of a Jordan algebra of degree 3, pseudo-composition algebras, certain algebras that arise in the study of Riccati differential equations, as well as many other algebras. We investigate the representations of rank 3 algebras and show under some conditions on the eigenspaces of the left multiplication operator determined by an idempotent element that the finite-dimensional irreducible representations are all one-dimensional.
引用
收藏
页码:2867 / 2877
页数:11
相关论文
共 50 条
  • [11] On *-Representations of Polynomial Algebras in Quantum Matrix Spaces of Rank 2
    Bershtein, Olga
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (04) : 1083 - 1093
  • [12] On *-Representations of Polynomial Algebras in Quantum Matrix Spaces of Rank 2
    Olga Bershtein
    Algebras and Representation Theory, 2014, 17 : 1083 - 1093
  • [13] Representations of trigonometric Cherednik algebras of rank one in positive characteristic
    Latour, Frederic
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (07) : 1629 - 1644
  • [14] Representations of rank two affine Hecke algebras at roots of unity
    Davis, Matt
    JOURNAL OF ALGEBRA, 2012, 352 (01) : 104 - 140
  • [15] Representations of Hopf-Ore Extensions of Group Algebras and Pointed Hopf Algebras of Rank One
    Zhen Wang
    Lan You
    Hui-Xiang Chen
    Algebras and Representation Theory, 2015, 18 : 801 - 830
  • [16] Representations of Hopf-Ore Extensions of Group Algebras and Pointed Hopf Algebras of Rank One
    Wang, Zhen
    You, Lan
    Chen, Hui-Xiang
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (03) : 801 - 830
  • [17] DISTRIBUTIVE LATTICES DEFINED FOR REPRESENTATIONS OF RANK TWO SEMISIMPLE LIE ALGEBRAS
    Alverson, L. Wyatt, II
    Donnelly, Robert G.
    Lewis, Scott J.
    Mcclard, Marti
    Pervine, Robert
    Proctor, Robert A.
    Wildberger, N. J.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (01) : 527 - 559
  • [18] Constructions of representations of rank two semisimples Lie algebras with distributive lattices
    Alverson, L. Wyatt, II
    Donnelly, Robert G.
    Lewis, Scott J.
    Pervine, Robert
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [19] Purely Atomic Representations of Higher-Rank Graph C*-Algebras
    Farsi, Carla
    Gillaspy, Elizabeth
    Jorgensen, Palle
    Kang, Sooran
    Packer, Judith
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (06)
  • [20] Infinite-rank representations of orders in nonsemisimple algebras and module categories
    Rump W.
    Journal of Mathematical Sciences, 2007, 144 (2) : 3993 - 4003