Meta-learning Based Evolutionary Clustering Algorithm

被引:0
|
作者
Tomp, Dmitry [1 ,2 ]
Muravyov, Sergey [1 ,2 ]
Filchenkov, Andrey [1 ,2 ]
Parfenov, Vladimir [2 ]
机构
[1] ITMO Univ, Machine Learning Lab, 49 Kronverksky Pr, St Petersburg 197101, Russia
[2] ITMO Univ, Informat Technol & Programming Fac, 49 Kronverksky Pr, St Petersburg 197101, Russia
基金
俄罗斯科学基金会;
关键词
Clustering; Evolutionary clustering; Meta-learning; Evolutionary computation; SELECTION;
D O I
10.1007/978-3-030-33607-3_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we address the hard clustering problem. We present a new clustering algorithm based on evolutionary computation searching a best partition with respect to a given quality measure. We present 32 partition transformation that are used as mutation operators. The algorithm is a (1 + 1) evolutionary strategy that selects a random mutation on each step from a subset of preselected mutation operators. Such selection is performed with a classifier trained to predict usefulness of each mutation for a given dataset. Comparison with state-of-the-art approach for automated clustering algorithm and hyperparameter selection shows the superiority of the proposed algorithm.
引用
收藏
页码:502 / 513
页数:12
相关论文
共 50 条
  • [41] Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning
    Song, Xingyou
    Yang, Yuxiang
    Choromanski, Krzysztof
    Caluwaerts, Ken
    Gao, Wenbo
    Finn, Chelsea
    Tan, Jie
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 3769 - 3776
  • [42] Extending meta-learning framework for clustering gene expression data with component-based algorithm design and internal evaluation measures
    Vukicevic, Milan
    Radovanovic, Sandro
    Delibasic, Boris
    Suknovic, Milija
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 14 (02) : 101 - 119
  • [43] A meta-learning approach for selecting image segmentation algorithm
    Aguiar, Gabriel Jonas
    Mantovani, Rafael Gomes
    Mastelini, Saulo M.
    de Carvalho, Andre C. P. F. L.
    Campos, Gabriel F. C.
    Barbon Junior, Sylvio
    [J]. PATTERN RECOGNITION LETTERS, 2019, 128 : 480 - 487
  • [44] A meta-learning based framework for building algorithm recommenders: An application for educational arena
    Garcia -Saiz, Diego
    Zorrilla, Marta
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (02) : 1449 - 1459
  • [45] Algorithm Recommendation and Performance Prediction Using Meta-Learning
    Palumbo, Guilherme
    Carneiro, Davide
    Guimares, Miguel
    Alves, Victor
    Novais, Paulo
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2023, 33 (03)
  • [46] Learning Meta-Learning (LML) dataset: Survey data of meta-learning parameters
    Corraya, Sonia
    Al Mamun, Shamim
    Kaiser, M. Shamim
    [J]. DATA IN BRIEF, 2023, 51
  • [47] A Clustering Based Multiobjective Evolutionary Algorithm
    Zhang, Hu
    Song, Shenmin
    Zhou, Aimin
    Gao, Xiao-Zhi
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 723 - 730
  • [48] A new data characterization for selecting clustering algorithms using meta-learning
    Pimentel, Bruno Almeida
    de Carvalho, Andre C. P. L. F.
    [J]. INFORMATION SCIENCES, 2019, 477 : 203 - 219
  • [49] BRAINSTORMING Agent based Meta-learning Approach
    Plewczynski, Dariusz
    [J]. ICAART 2011: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2011, : 487 - 490
  • [50] Meta-learning evolutionary artificial neural networks: by means of cellular automata
    Abu Salah, Asma
    Al-Salqan, Yahya
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 1, PROCEEDINGS, 2006, : 186 - +