Meta-learning Based Evolutionary Clustering Algorithm

被引:0
|
作者
Tomp, Dmitry [1 ,2 ]
Muravyov, Sergey [1 ,2 ]
Filchenkov, Andrey [1 ,2 ]
Parfenov, Vladimir [2 ]
机构
[1] ITMO Univ, Machine Learning Lab, 49 Kronverksky Pr, St Petersburg 197101, Russia
[2] ITMO Univ, Informat Technol & Programming Fac, 49 Kronverksky Pr, St Petersburg 197101, Russia
基金
俄罗斯科学基金会;
关键词
Clustering; Evolutionary clustering; Meta-learning; Evolutionary computation; SELECTION;
D O I
10.1007/978-3-030-33607-3_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we address the hard clustering problem. We present a new clustering algorithm based on evolutionary computation searching a best partition with respect to a given quality measure. We present 32 partition transformation that are used as mutation operators. The algorithm is a (1 + 1) evolutionary strategy that selects a random mutation on each step from a subset of preselected mutation operators. Such selection is performed with a classifier trained to predict usefulness of each mutation for a given dataset. Comparison with state-of-the-art approach for automated clustering algorithm and hyperparameter selection shows the superiority of the proposed algorithm.
引用
收藏
页码:502 / 513
页数:12
相关论文
共 50 条
  • [1] A federated recommendation algorithm based on user clustering and meta-learning
    Yu, Enqi
    Ye, Zhiwei
    Zhang, Zhiqiang
    Qian, Ling
    Xie, Meiyi
    [J]. APPLIED SOFT COMPUTING, 2024, 158
  • [2] Clustering Algorithm Recommendation: A Meta-learning Approach
    Ferrari, Daniel G.
    de Castro, Leandro Nunes
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, (SEMCCO 2012), 2012, 7677 : 143 - 150
  • [3] Unsupervised Meta-Learning for Clustering Algorithm Recommendation
    Pimentel, Bruno Almeida
    de Carvalho, Andre C. P. L. E.
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [4] Entity clustering-based meta-learning for link prediction in evolutionary fault diagnosis event graphs
    Wang, Tian
    Fang, Qiang
    Chi, Meng
    Shen, Jianming
    Zhang, Xuebing
    Shan, Dandan
    [J]. APPLIED INTELLIGENCE, 2024, 54 (21) : 10525 - 10540
  • [5] Continual meta-learning algorithm
    Mengjuan Jiang
    Fanzhang Li
    Li Liu
    [J]. Applied Intelligence, 2022, 52 : 4527 - 4542
  • [6] Isolation forests and landmarking-based representations for clustering algorithm recommendation using meta-learning
    Gabbay, Itay
    Shapira, Bracha
    Rokach, Lior
    [J]. Information Sciences, 2021, 574 : 473 - 489
  • [7] Statistical versus Distance-Based Meta-Features for Clustering Algorithm recommendation Using Meta-Learning
    Pimentel, Bruno Almeida
    de Carvalho, Andre C. P. L. E.
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 845 - 852
  • [8] Continual meta-learning algorithm
    Jiang, Mengjuan
    Li, Fanzhang
    Liu, Li
    [J]. APPLIED INTELLIGENCE, 2022, 52 (04) : 4527 - 4542
  • [9] Feature Selection Algorithm Ensembling Based on Meta-Learning
    Tanfilev, Igor
    Filchenkov, Andrey
    Smetannikov, Ivan
    [J]. 2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [10] Modulation Recognition Algorithm Based on Transfer Meta-Learning
    Pang, Yiqiong
    Xu, Hua
    Zhang, Yue
    Zhu, Huali
    Peng, Xiang
    [J]. Binggong Xuebao/Acta Armamentarii, 2023, 44 (10): : 2954 - 2963