ACYCLIC EDGE-COLORING OF PLANAR GRAPHS: Δ COLORS SUFFICE WHEN Δ IS LARGE

被引:4
|
作者
Cranston, Daniel W. [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
关键词
acyclic edge-coloring; planar; discharging;
D O I
10.1137/17M1158355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An acyclic edge-coloring of a graph G is a proper edge-coloring of G such that the subgraph induced by any two color classes is acyclic. The acyclic chromatic index, chi'(a)(G), is the smallest number of colors allowing an acyclic edge-coloring of G. Clearly chi'(a)(G) >= Delta(G) for every graph G. Cohen, Havet, and Muller conjectured that there exists a constant M such that every planar graph with Delta(G) >= M has chi'(a)(G) - Delta(G). We prove this conjecture.
引用
收藏
页码:614 / 628
页数:15
相关论文
共 50 条
  • [21] Acyclic edge coloring of graphs with large girths
    LIN QiZhong1
    2Center for Discrete Mathematics
    [J]. Science China Mathematics, 2012, 55 (12) : 2589 - 2596
  • [22] Edge-coloring bipartite graphs
    Kapoor, A
    Rizzi, R
    [J]. JOURNAL OF ALGORITHMS, 2000, 34 (02) : 390 - 396
  • [23] Local conditions for planar graphs of acyclic edge coloring
    Wenwen Zhang
    [J]. Journal of Applied Mathematics and Computing, 2022, 68 : 721 - 738
  • [24] Acyclic Edge Coloring of IC-planar Graphs
    Wen-yao Song
    Yuan-yuan Duan
    Juan Wang
    Lian-ying Miao
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 581 - 589
  • [25] Acyclic edge coloring of graphs with large girths
    QiZhong Lin
    JianFeng Hou
    Yue Liu
    [J]. Science China Mathematics, 2012, 55 : 2593 - 2600
  • [26] Acyclic Edge Coloring of IC-planar Graphs
    Song, Wen-yao
    Duan, Yuan-yuan
    Wang, Juan
    Miao, Lian-ying
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (03): : 581 - 589
  • [27] Local conditions for planar graphs of acyclic edge coloring
    Zhang, Wenwen
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 721 - 738
  • [28] Acyclic edge coloring of graphs with large girths
    Lin QiZhong
    Hou JianFeng
    Liu Yue
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (12) : 2593 - 2600
  • [29] Strong edge-coloring of planar graphs with girth at least seven
    Yuan, Jiaxin
    Huang, Mingfang
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, (51): : 295 - 304
  • [30] ON EDGE-COLORING INDIFFERENCE GRAPHS
    DEFIGUEIREDO, CMH
    MEIDANIS, J
    DEMELLO, CP
    [J]. LATIN '95: THEORETICAL INFORMATICS, 1995, 911 : 286 - 299