Zinc Oxide Coated Carbon Dot Nanoparticles as Electron Transport Layer for Inverted Polymer Solar Cells

被引:16
|
作者
Zhao, Wensheng [1 ,2 ]
Yan, Lingpeng [1 ,2 ,5 ]
Gu, Huimin [1 ,2 ]
Li, Zerui [2 ]
Wang, Yaling [3 ]
Luo, Qun [2 ]
Yang, Yongzhen [1 ]
Liu, Xuguang [5 ]
Wang, Hua [1 ,4 ]
Ma, Chang-Qi [2 ]
机构
[1] Taiyuan Univ Technol, Key Lab Interface Sci & Engn Adv Mat, Minist Educ, Taiyuan 030024, Peoples R China
[2] Chinese Acad Sci, Printed Elect Res Ctr, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China
[3] North Univ China, Sch Energy & Power Engn, Taiyuan 030051, Peoples R China
[4] Taiyuan Univ Technol, Coll Text Engn, Taiyuan 030600, Peoples R China
[5] Taiyuan Univ Technol, Inst New Carbon Mat, Taiyuan 030024, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2020年 / 3卷 / 11期
基金
中国国家自然科学基金;
关键词
polymer solar cells; ZnO; carbon dot; core-shell composites; electron transport layer;
D O I
10.1021/acsaem.0c02323
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interface engineering is a powerful tool to improve the performance of polymer solar cells (PSCs), and zinc oxide (ZnO) is a significant interfacial material for PSCs. However, ZnO is easy to agglomerate, which leads to low charge conductivity and poor stability; moreover, the hydroxyl groups on its surface also lead to a large number of defects, which restricts the application of ZnO. In order to improve the dispersion stability of ZnO nanoparticles and inhibit its surface defects, ZnO coated carbon dot (CD@ZnO) nanoparticles are first synthesized by direct particle precipitation. The introduced CD induces and participates in the growth of ZnO crystal. As a result, CD@ZnO nanoparticles show better colloidal stability, wider energy band gap, and fewer surface defects, which enhances the exciton extraction and restrains the charge recombination at the interface of the active layer and electron transport layer (ETL) of PSCs. Therefore, the device based on poly[4,8-bis[5-(2-ethylhexyl)-4-fluoro-2-thienyl]benzo[1,2-b:4,5-bldithiophene-2,6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo [dithiophene-1,3-diyl] -2,5-thio- phenediyl] :3,9 -bis (1-oxo-2-methyl ene-3- (1,1-dicyanom ethylene) -5,6-di fluor in dan one) -5, 5,11, 11 - tetrakis (4-n-hexylphenyl) - dithieno [2,3d:2 ',3' d'] -s-indaceno [1,2-b:5,6-b] dithiophene with CD@ZnO as ETL exhibits a greatly strengthened power conversion efficiency of 12.23% compared to 11.26% of the refernce device. Meanwhile, the CD@ZnO ETL also achieved a big performance boost in fullerene-based solar cells. This work offers an available method using CDs to modify ZnO for highly efficient PSCs.
引用
收藏
页码:11388 / 11397
页数:10
相关论文
共 50 条
  • [31] Sn-doped TiO2 coated zinc oxide nanorods as electron transport layer in perovskite solar cells
    Phimu, L. Kholee
    Singh, Khomdram Jolson
    Dhar, Rudra Sankar
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2023, 48 (02):
  • [32] Sn-doped TiO2 coated zinc oxide nanorods as electron transport layer in perovskite solar cells
    L Kholee Phimu
    Khomdram Jolson Singh
    Rudra Sankar Dhar
    Sādhanā, 48
  • [33] Role of oxide buffer layer in polymer solar cells with inverted structure
    Zhang, Qifeng
    Wiranwetchayan, Orawan
    Liang, Zhiqiang
    Cao, Guozhong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [34] Inverted polymer solar cells with indium sulfide electron selective layer
    Menon, M. R. Rajesh
    Maheshkumar, M. V.
    Sreekumar, K.
    Kartha, C. Sudha
    Vijayakumar, K. P.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (12) : 2212 - 2217
  • [35] Inverted polymer solar cells with Zn2SnO4 nanoparticles as the electron extraction layer
    Huang, Xiao-Juan
    Yao, Xiang
    Xu, Wen-Zhan
    Wang, Kai
    Huang, Fei
    Gong, Xiong
    Cao, Yong
    CHINESE CHEMICAL LETTERS, 2017, 28 (08) : 1755 - 1759
  • [36] Passivating ZnO with a naphthalimide-Schiff base as electron transport layer for inverted polymer solar cells
    Gao, Zhixiang
    Guo, Li
    Sun, Yue
    Qu, Wenshan
    Yang, Tingting
    Li, Bangquan
    Li, Jiangang
    Duan, Lian
    ORGANIC ELECTRONICS, 2019, 67 : 232 - 236
  • [37] Inverted polymer solar cells with Zn2SnO4 nanoparticles as the electron extraction layer
    Xiao-Juan Huang
    Xiang Yao
    Wen-Zhan Xu
    Kai Wang
    Fei Huang
    Xiong Gong
    Yong Cao
    ChineseChemicalLetters, 2017, 28 (08) : 1755 - 1759
  • [38] Degradation Study of Inverted Polymer Solar Cells Using Inkjet Printed ZnO Electron Transport Layer
    Sacramento, Angel
    Ramirez-Como, Magaly
    Balderrama, Victor S.
    Garduno, Salvador I.
    Estrada, Magali
    Marsal, Lluis F.
    2019 LATIN AMERICAN ELECTRON DEVICES CONFERENCE (LAEDC), 2019, : 57 - 60
  • [39] Inverted polymer solar cells including ZnO electron transport layer fabricated by facile spray pyrolysis
    Noh, Yong-Jin
    Na, Seok-In
    Kim, Seok-Soon
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 117 : 139 - 144
  • [40] Correlating annealing temperature of ZnO nanoparticle electron transport layer with performance of inverted polymer solar cells
    Rui Xu
    Xiaoxiang Sun
    Chang Li
    Like Huang
    Zhenglong Li
    Hongkun Cai
    Juan Li
    Yaofang Zhang
    Jian Ni
    Jianjun Zhang
    Polymer Bulletin, 2018, 75 : 4397 - 4408