Karyotype, evolution and phylogenetic reconstruction in Micronycterinae bats with implications for the ancestral karyotype of Phyllostomidae

被引:7
|
作者
Benathar, T. C. M. [2 ]
Nagamachi, C. Y. [1 ,4 ]
Rodrigues, L. R. R. [3 ]
O'Brien, P. C. M. [5 ]
Ferguson-Smith, M. A. [5 ]
Yang, F. [6 ]
Pieczarka, J. C. [1 ,4 ]
机构
[1] Univ Fed Para, Ctr Estudos Avancados Biodiversidade, Lab Citogenet, Av Perimetral,Sn Guama, BR-66077 Belem, Para, Brazil
[2] PPGBionorte, Belem, Para, Brazil
[3] Univ Fed Oeste Para, Lab Genet & Biodiversidade, ICED, Belem, Para, Brazil
[4] CNPq, Brasilia, DF, Brazil
[5] Univ Cambridge, Cambridge Resource Ctr Comparat Genom, Dept Vet Med, Cambridge, England
[6] Welcome Trust Sanger Inst, Cytogenet Facil, Hinxton, England
关键词
Chromosome phylogeny; Interstitial telomeres; Cytotaxonomy; Genomic mapping; LEAF-NOSED BATS; CHROMOSOME PAINTING PHYLLOSTOMIDAE; CHIROPTERA; STENODERMATINAE; CLASSIFICATION; SEQUENCES; SITES;
D O I
10.1186/s12862-019-1421-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundThe Micronycterinae form a subfamily of leaf-nosed bats (Phyllostomidae) that contains the genera Lampronycteris Sanborn, 1949, and Micronycteris Gray, 1866 (stricto sensu), and is characterized by marked karyotypic variability and discrepancies in the phylogenetic relationships suggested by the molecular versus morphological data. In the present study, we investigated the chromosomal evolution of the Micronycterinae using classical cytogenetics and multidirectional chromosome painting with whole-chromosomes probes of Phyllostomus hastatus and Carollia brevicauda. Our goal was to perform comparative chromosome mapping between the genera of this subfamily and explore the potential for using chromosomal rearrangements as phylogenetic markers.ResultsThe Micronycterinae exhibit great inter- and intraspecific karyotype diversity, with large blocks of telomere-like sequences inserted within or adjacent to constitutive heterochromatin regions. The phylogenetic results generated from our chromosomal data revealed that the Micronycterinae hold a basal position in the phylogenetic tree of the Phyllostomidae. Molecular cytogenetic data confirmed that there is a low degree of karyotype similarity between Lampronycteris and Micronycteris specimens analyzed, indicating an absence of synapomorphic associations in Micronycterinae.ConclusionsWe herein confirm that karyotypic variability is present in subfamily Micronycterinae. We further report intraspecific variation and describe a new cytotype in M. megalotis. The cytogenetic data show that this group typically has large blocks of interstitial telomeric sequences that do not appear to be correlated with chromosomal rearrangement events. Phylogenetic analysis using chromosome data recovered the basal position for Micronycterinae, but did not demonstrate that it is a monophyletic lineage, due to the absence of common chromosomal synapomorphy between the genera. These findings may be related to an increase in the rate of chromosomal evolution during the time period that separates Lampronycteris from Micronycteris.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Cytotaxonomy of Gallinula melanops (Gruiformes, Rallidae): Karyotype evolution and phylogenetic inference
    Furo, Ivanete de Oliveira
    Kretschmer, Rafael
    O'Brien, Patricia C. M.
    Pereira, Jorge Claudio da Costa
    Gunski, Ricardo Jose
    Garnero, Analia Del Valle
    O'Connor, Rebecca E.
    Griffin, Darren Karl
    Ferguson-Smith, Malcolm A.
    Correa de Oliveira, Edivaldo Herculano
    GENETICS AND MOLECULAR BIOLOGY, 2021, 44 (02)
  • [22] Karyotype, Sex Determination, and Meiotic Chromosome Behavior in Two Pholcid (Araneomorphae, Pholcidae) Spiders: Implications for Karyotype Evolution
    Golding, Adriana E.
    Paliulis, Leocadia V.
    PLOS ONE, 2011, 6 (09):
  • [23] Genome sizes of grasses (Poaceae), chromosomal evolution, paleogenomics and the ancestral grass karyotype (AGK)
    Tkach, Natalia
    Winterfeld, Grit
    Roeser, Martin
    PLANT SYSTEMATICS AND EVOLUTION, 2025, 311 (01)
  • [24] Integrated comparative genome maps and their implications for karyotype evolution of carnivores
    Yang, FT
    Graphodatsky, AS
    CHROMOSOMES TODAY, VOL 14, 2004, 14 : 215 - 224
  • [25] An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes
    Zhikang Zhang
    Fanbo Meng
    Pengchuan Sun
    Jiaqing Yuan
    Ke Gong
    Chao Liu
    Weijie Wang
    Xiyin Wang
    BMC Genomics, 21
  • [26] An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes
    Zhang, Zhikang
    Meng, Fanbo
    Sun, Pengchuan
    Yuan, Jiaqing
    Gong, Ke
    Liu, Chao
    Wang, Weijie
    Wang, Xiyin
    BMC GENOMICS, 2020, 21 (01)
  • [27] Karyotype evolution and phylogenetic analyses in the genus Cardiospermum L. (Paullinieae, Sapindaceae)
    Urdampilleta, J. D.
    Coulleri, J. P.
    Ferrucci, M. S.
    Forni-Martins, E. R.
    PLANT BIOLOGY, 2013, 15 (05) : 868 - 881
  • [28] Cytogenetics of eight Neotropical species of Chauliognathus Henzt, 1830:: implications on the ancestral karyotype in Cantharidae (Coleoptera)
    Machado, V
    Galián, J
    De Araújo, AM
    Valente, VLS
    HEREDITAS, 2001, 134 (02) : 121 - 124
  • [29] Chromosomal Evolution in the Phylogenetic Context: A Remarkable Karyotype Reorganization in Neotropical ParrotMyiopsitta monachus(Psittacidae)
    Furo, Ivanete de Oliveira
    Kretschmer, Rafael
    O'Brien, Patricia Caroline
    Pereira, Jorge C.
    Garnero, Analia del Valle
    Gunski, Ricardo Jose
    O'Connor, Rebecca E.
    Griffin, Darren Karl
    Baia Gomes, Anderson Jose
    Ferguson-Smith, Malcolm Andrew
    Correa de Oliveira, Edivaldo Herculano
    FRONTIERS IN GENETICS, 2020, 11
  • [30] Karyotype Evolution in Primates and Rodents: Phylogenetic Relationships and Chromosomal Signatures by Comparative Cytogenetic Approaches
    Picone, B.
    Sineo, L.
    FOLIA PRIMATOLOGICA, 2009, 80 (06) : 376 - 377