Optimal reinsurance for Gerber-Shiu functions in the Cramer-Lundberg model

被引:8
|
作者
Preischl, M.
Thonhauser, S.
机构
来源
基金
奥地利科学基金会;
关键词
Dynamic reinsurance; Optimal stochastic control; Gerber-Shiu functions; Policy iteration; Cramer-Lundberg model;
D O I
10.1016/j.insmatheco.2019.04.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
Complementing existing results on minimal ruin probabilities, we minimize expected discounted penalty functions (or Gerber-Shiu functions) in a Cramer-Lundberg model by choosing optimal reinsurance. Reinsurance strategies are modeled as time dependent control functions, which lead to a setting from the theory of optimal stochastic control and ultimately to the problem's Hamilton-Jacobi-Bellman equation. We show existence and uniqueness of the solution found by this method and provide numerical examples involving light and heavy tailed claims and also give a remark on the asymptotics. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 50 条
  • [21] The Gerber-Shiu discounted penalty functions for a risk model with two classes of claims
    Zhang, Zhimin
    Li, Shuanming
    Yang, Hu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) : 643 - 655
  • [22] Ruin probability in the Cramer-Lundberg model with risky investments
    Xiong, Sheng
    Yang, Wei-Shih
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (05) : 1125 - 1137
  • [23] The Markovian Shot-noise Risk Model: A Numerical Method for Gerber-Shiu Functions
    Pojer, Simon
    Thonhauser, Stefan
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (01)
  • [24] Equity Cost Induced Dichotomy for Optimal Dividends with Capital Injections in the Cramer-Lundberg Model
    Avram, Florin
    Goreac, Dan
    Li, Juan
    Wu, Xiaochi
    [J]. MATHEMATICS, 2021, 9 (09)
  • [25] ON GERBER-SHIU FUNCTIONS AND OPTIMAL DIVIDEND DISTRIBUTION FOR A LEVY RISK PROCESS IN THE PRESENCE OF A PENALTY FUNCTION
    Avram, F.
    Palmowski, Z.
    Pistorius, M. R.
    [J]. ANNALS OF APPLIED PROBABILITY, 2015, 25 (04): : 1868 - 1935
  • [26] The Markovian Shot-noise Risk Model: A Numerical Method for Gerber-Shiu Functions
    Simon Pojer
    Stefan Thonhauser
    [J]. Methodology and Computing in Applied Probability, 2023, 25
  • [27] A transient Cramer-Lundberg model with applications to credit risk
    Delsing, Guusje
    Mandjes, Michel
    [J]. JOURNAL OF APPLIED PROBABILITY, 2021, 58 (03) : 721 - 745
  • [28] Resource Control for Physical Experiments in the Cramer-Lundberg Model
    Nazarov, A. A.
    Broner, V. I.
    [J]. RUSSIAN PHYSICS JOURNAL, 2016, 59 (07) : 1024 - 1036
  • [29] The Gerber-Shiu Penalty Function about Dual Binomial Model
    Yu Na
    Wang Hanxing
    [J]. ADVANCES IN MANAGEMENT OF TECHNOLOGY, PT 1, 2009, : 572 - +
  • [30] Cramer-Lundberg model for some classes of extremal Markov sequences
    Jasiulis-Goldyn, Barbara Helena
    Lechanska, Alicja
    Misiewicz, Jolanta Krystyna
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2023, 63 (03) : 272 - 290